Automatic Techniques to
Systematically Discover New
Heap Exploitation Primitives

Insu Yun, Dhaval Kapil, and Taesoo Kim

Georgia Institute of Technology

Heap vulnerabilities are the most common,
vet serious security issues.

Root cause of CVEs by patch year

100%
90%
80%
70%

60% | % of heap vulnerabilities
233
= — = 0
c0a 39%

50%

40%

30%

20%

10% 24
21 22 26
0% 2 : ¢
2006 2007 2008 2009 2010 201 2012 2013 2014 2015 2016 2017 2018
m Stack Corruption ~ ® Heap Corruption M Use After Free ~ ® Type Confusion Uninitialized Use Heap OOB Read m Other

From “Killing Uninitialized Memory: Protecting the OS Without Destroying Performance”,

Joe Bialek and Shayne Hiet-Block, CopCon 2019 ,

Heap exploitation techniques (HETs) are preferable
methods to exploit heap vulnerabilities
* Abuse underlying allocator to achieve more powerful primitives (e.g.,

arbitrary write) for control hijacking

* Application-agnostic: rely on only underlying allocators
* Powerful: e.g., off-by-one null byte overflow = arbitrary code execution

e Used to compromise (in 2019)

@ vmware
WhatsApp ESX]

&

Example: unlink() in ptmalloc?2

- N

unlink(): P->fd->bk
P->bk->fd

P->bk
P->fd

4

Example: unlink() in ptmalloc?2

6. Ex S

unlink(): P->fd->bk = P->bk
P->bk->fd P->fd

Example: Unsafe unlink() in the presence of
memory corruptions (e.g., overtlow)

Chunk

& &

unlink(): P->fd->bk = P->bk
=> fptr = evil

6

Security checks are introduced in the
allocator to prevent such exploitations

unlink(): assert(P->fd->bkR == P);
P->fd->bk = P->bk

This check is still bypassable,
but it makes HET more complicated

Researchers have been studied reusable HETs
to handle such complexities

F

Project Zero
Understanding t

(N[EAKINO) News and update om the Proie oro team 8 nogle

All analyses are manual, ad-hoc, and allocator-specific!

o

Exp101t1ng the wii Posted by Chris Evans, Exploit Writer Underling to Tavis Ormandy

P ——

From: "Phantasmal Phantasir)

Problem 1: Existing analyses are highly biased
to certain allocators

ptmalloc2 (allocato tcmalloc

Problem?2: A manual re-analysis is required in
the changes of an allocator’s implementation

ptmalloc2 (Linux allocator)
A new feature:

thread-local cache (tcache)

SIEIEP e

Question: How to find HETs automatically?

| — | | — | | — | local caching, a recent addition to glibc malloc.

Our key idea: ArcHeap autonomously explore spaces
similar to fuzzing!

Technical challenges

Lack of an efficient
way to evaluate HETs

Large search space

1L
—~ HET

& \
/

12

Technical challenges

Lack of an efficient
way to evaluate HETs

Large search space

-
~ HET
\

13

Search space consisting of heap actions is enormous

264 size(p) x 26
\ N, ./ :
malloc(sz) free(p) p[i]=V buf[i]=v
Allocation Deallocation Heap write Buffer write

/

Search space can be reduced using model-based search
based on common designs of allocators!

\

N —overTION T TrERTT =T TreET oA

Overflow Write-after-free Double free Arbitrary free

Buggy actions

Common design 1: Binning

e Specially managing chunks in different size groups
e Small chunks: Performance is more important
e Large chunks: Memory footprint is more important

* e.g., ptmalloc
 fast bin (< 128 bytes): no merging in free chunks
* small bin (< 1024 bytes): merging is enabled

» Sampling a size uniformly in the 254 space =2 P(fast bin) = 2>’

ArcHeap selects an allocation size aware of binning
* Sampling in exponentially distant size groups

* ArcHeap partitions an allocation size into four groups:
(29, 2], (27, 219], (219, 2°], and (21>, 2]

* Then, it selects a group and then selects a size in the group uniformly
e e.g., P(fast bin) > P(selecting a first group) =%

Other common designs: Cardinal data and
In-place metadata

* Cardinal data: Metadata in a chunk are either sizes or pointers, but not
other random values

* In-place metadata: Allocators place metadata near its chunk’s start or
end for locality

Cardinal data and In-place metadata reduce
search space in data writes

/ Random size
Size :

> Other chunk’s size
pl[i]=v<—> pointer —> Other chunk

H rite \
et xiﬁ Buffer
Container

An array that stores chunks

-8~ 38 1337

Technical challenges

Lack of an efficient
way to evaluate HETs

Large search space

L
—~ HET

& \
/

19

Automatically synthesizing full exploits is
inappropriate in evaluating HETs

e Difficult: e.g., In the DAPRA CGC competition, only one heap bug was
successfully exploited by the-state-of-the-art systems

* Inefficient: Takes a few seconds, minutes, or even hours for one try

* Application-dependent: A HET, which is not useful in a certain
application, may be useful in general

Our idea: Evaluating impacts of exploitations (i.e., detecting
broken invariants that have security implications)

1. Allocated memory should not be overlapped with pre-allocated

memory
* Overlapping chunks: Can corrupt other chunk’s data Easy to detect: Che.ck
e Arbitrary chunks: Can corrupt global data —~—__ thisatevery allocation

2. An allocator should not modify memory, which is not under its
control (i.e., heap)

* Arbitrary writes

e Restricted writes How about this?
< (NOTE: should be efficient)

21

Shadow memory can detect arbitrary writes
and restricted writes

* Maintain external consistency * Check divergence
container[i] = malloc(sz) malloc(sz) free(p)
Container‘shadow[i' — mallaclc=) Allocation Deallocation

Allocation | Divergence can only happen |,
in the internal of allocators |1] =V

ap write bU'F[i]=V

buf [1] =V K Buffer write

buf 1]=v
ShadOW[] CHECK: equal (container, container ,qou)
Buffer write equal(buf, bu'Fshadow)

22

ArcHeap provides a minimized PoC code for
further analysis

* Proof-of-Concept code: Converting actions into C code
 Trivial, because they have one-to-one mapping

* Minimize the PoC code using delta-debugging

* |dea: Eliminate an action, which is not necessary for triggering the impact of
exploitations

* Details can be found in our paper

Evaluation questions

1. How effective is ArcHeap in finding new HETs, compared to the
existing tool, HeapHopper?

2. How general is ArcHeap’s approach?

ArcHeap discovered five new HETs in ptmalloc2,
which cannot be found by HeapHopper

» Unsorted bin into stack: Write-after-free = Arbitrary chunk
e Requires fewer steps (5 steps vs 9 steps)

* House of unsorted einherjar: Off-by-one write = Arbitrary chunk

e Nn reqauire hean address leak

/

_

All HETS cannot be discovered by HeapHopper because of its
scalability issue (i.e., symbolic execution + model checking)

\

/

e Fast bin into other bin: Write-after-free = Arbitrary chunk

ArcHeap is generic enough to test various
allocators

e Tested 10 different allocators

e Cannot find HETs in LLVM Scudo, FreeGuard, and Guarder, which are “secure
allocators”

Impacts of exploitation

Allocators P I
. AW
Even found HETs in ——— Works for ptmalloc2- |—ovwe
“secure” allocators 7Y d unrelated allocators [Ar ov wr
v

muh %‘/ AF, OV, WF AF OV, WF AF, OV, WF
jema N
temalloX\ /7 OV, DF OV, WE DF OV 0)Y%

108 v OV, WE DF OV, WF WF

mimalloc-secure-1.0. v DF
DieHarder-5a0f8a52 DF
mesh-a R DE NO

N: New techniques compared to the related work, HeapHopper [17]; only top
three allocators matter. NO: No bug is required, 1.e., incorrect implementations.
I: In-place metadata, P: ptmalloc2-related allocators.

26

Case studyl: Double free = Overlapping
chunks in DieHarder and mimalloc-secure

// [PRE-CONDITION]

// lsz : large size (> 64 KB)

// xlsz: more large size (>= lsz + 4KB)

// [BUG] double free

// [POST-CONDITION] Double free large chunk =»
// p2 ==malloc(lsz); Overlapping chunk
void* p0 = malloc(lsz);

free(p0);

void* pl = malloc(xlsz);

// [BUG] free 'p0' again
free(p0);

void* p2 = malloc(lsz); Same thing happens in both
f 1); . .
ree(pl) DieHarder and mimalloc

assert(p2 == malloc(lsz));

Interestingly, these issues are irrelevant

-

o

Me: Is mimalloc
related to DieHarder?

~

)

l

-

Mimalloc developer:
No!

~

28

free (plarge)

DieHarder unmap(plarge)

mimalloc check(pla.«ge) gﬂf

Our PoC has been added in a mimalloc’s
regression test

55 static void double_free2() {
voidx p[256];
uintptr_t buf[256];
// [INFO] Command buffer: 0x327b2000
// [INFO] Input size: 182
p[@] = malloc(712352);
p[1] = malloc(786432);
free(pl[o]);
// [VULN] Double free
free(plo]l);
p[2] = malloc(786440);
p[3] = malloc(917504);
p[4] = malloc(786440);
// [BUG] Found overlap
// pl4]1=0x433f1402000 (size=917504), p[1]=0x433f14c2000 (
fprintf(stderr, "pl: %p-%p, p2: %p-%p\n", pl4], (uint8_tx*
786432);
+ }

+
+
+
+
+
L
+
A
+
+
+
+
+
+
+
L

29

Case study 2: Overflow = Arbitrary chunk in
dlmalloc-2.8.6

* dimalloc: ancestor of ptmalloc2 but has been diverged after its fork

void* p0 = malloc(sz);

void* pl = malloc(xlsz);

void* p2 = malloc(lsz);

void* p3 = malloc(sz); Looks complicated...

// [BUG] overflowing p3 to overwrite top chunk
struct malloc chunk *tc = raw to chunk(p3 + chunk size(sz));
tc->size = 0;

void* p4
void* p5

malloc(fsz);
malloc(dst - p4 - chunk size(fsz) \

- offsetof(struct malloc chunk, f£fd));
assert(dst == malloc(sz));

30

'ts root cause is more complicated!

// Make top chunk available

void* p0 = malloc(sz):

// Set mr.mflags /=[USE NONCONTIGUOUS BIT |

void* pl = malloc(xlsz);

// Current top size < lsz (4096) and no available bins, so dlmalloc calls sys alloc
// Instead of using sbrk(), it inserts current top chunk into treebins

// and set| mmapped larea as a new top chunk because of the non-continous bit

id* p2 = malloc(lsz); i '
void* p2 = malloc(lsz) Easy to miss by manual analysis

void* p3 = malloc(sz);
// [BUG] overflowing p3 to overwrite treebin =» Shows benefits of
automated methods!

struct malloc chunk *tc = raw_ to chunk(p3 +
tc->size = 0;

// dlmalloc believes that treebins (i.e., top chunk) has enough size
// However (| underflow |happens because its size is actually zero
void* p4 = malloc(fsz);

// Similar to house-of-force, we can allocate an arbitrary chunk
void* p5 = malloc(dst - p4 - chunk size(fsz) \

- offsetof(struct malloc chunk, f£fd));
assert(dst == malloc(sz));

31

Discussion & Limitations

* Incompleteness: Unlike HeapHopper that is complete under its model
* But HeapHopper’s model cannot be complete because of its scalability issue

e Overfitting: Our strategy might not work for certain allocators

* In practice, our model is quite generic: found HETs in seven allocators out of
ten except for secure allocators

* Scope: ArcHeap only finds HETs and does not generate end-to-end
exploits for an application

Conclusion

e Automatic ways to discover HETs
* Model-based search based on common designs of allocators
* Shadow-memory-based detection

* Five new HETs in ptmalloc2 and several ones in other allocators
* Including secure allocators, DieHarder and mimalloc secure

e Open source: https://github.com/sslab-gatech/ArcHeap

33

https://github.com/sslab-gatech/ArcHeap

Thank you!

