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Heap vulnerabilities are the most common, 
yet serious security issues.

From “Killing Uninitialized Memory: Protecting the OS Without Destroying Performance”, 
Joe Bialek and Shayne Hiet-Block, CppCon 2019

% 𝑜𝑓 ℎ𝑒𝑎𝑝 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

=
233
604 = 39%
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Heap exploitation techniques (HETs) are preferable 
methods to exploit heap vulnerabilities
• Abuse underlying allocator to achieve more powerful primitives (e.g., 

arbitrary write) for control hijacking
• Application-agnostic: rely on only underlying allocators
• Powerful: e.g., off-by-one null byte overflow à arbitrary code execution

• Used to compromise (in 2019)
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Example: unlink() in ptmalloc2

fd bkChunk fd bkChunk fd bkChunk

unlink(): P->fd->bk = P->bk
P->bk->fd = P->fd
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Example: Unsafe unlink() in the presence of 
memory corruptions (e.g., overflow)

fd bkChunk addr evil

Object fptr

Chunk

unlink(): P->fd->bk = P->bk
=> fptr = evil

fd bkChunkfd bk
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Security checks are introduced in the 
allocator to prevent such exploitations
unlink(): assert(P->fd->bk == P);

P->fd->bk = P->bk

This check is still bypassable, 
but it makes HET more complicated
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Researchers have been studied reusable HETs 
to handle such complexities

All analyses are manual, ad-hoc, and allocator-specific!
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Problem 1: Existing analyses are highly biased 
to certain allocators

tcmalloc

jemalloc

DieHarder

mimalloc

mesh

scudo

Freeguard

ptmalloc2 (Linux allocator)
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ptmalloc2 (Linux allocator)

Problem2: A manual re-analysis is required in 
the changes of an allocator’s implementation

A new feature: 
thread-local cache (tcache)

Question: How to find HETs automatically?
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Our key idea: ArcHeap autonomously explore spaces 
similar to fuzzing!

HET“        ”
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Technical challenges

HET

Large search space

Lack of an efficient 
way to evaluate HETs
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Search space consisting of heap actions is enormous

malloc(sz)
Allocation

free(p)
Deallocation

p[i]=v
Heap write

buf[i]=v
Buffer write

p[ioverflow]=v
Overflow

free(pfreed)
Double free

pfreed[i]=v
Write-after-free

free(pnon-heap)
Arbitrary free

Legitimate actions

Buggy actions

264 size(p) x 264

Search space can be reduced using model-based search 
based on common designs of allocators!
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Common design 1: Binning

• Specially managing chunks in different size groups
• Small chunks: Performance is more important
• Large chunks: Memory footprint is more important

• e.g., ptmalloc
• fast bin (< 128 bytes): no merging in free chunks
• small bin ( < 1024 bytes): merging is enabled

• Sampling a size uniformly in the 264 space è P(fast bin) = 2-57
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ArcHeap selects an allocation size aware of binning

• Sampling in exponentially distant size groups

• ArcHeap partitions an allocation size into four groups:
(20, 25], (25, 210], (210, 215], and (215, 220]

• Then, it selects a group and then selects a size in the group uniformly
• e.g., P(fast bin) > P(selecting a first group) = ¼ 

16



Other common designs: Cardinal data and 
In-place metadata
• Cardinal data: Metadata in a chunk are either sizes or pointers, but not 

other random values

• In-place metadata: Allocators place metadata near its chunk’s start or 
end for locality
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Cardinal data and In-place metadata reduce 
search space in data writes

p[i]=v
Heap write

Size 

Pointer

0xdeadbeef

Random size
Other chunk’s size
Other chunk
Buffer
Container
An array that stores chunks

1337-8 ~ 8
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Technical challenges

HET

Large search space

Lack of an efficient 
way to evaluate HETs
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Automatically synthesizing full exploits is 
inappropriate in evaluating HETs
• Difficult: e.g., In the DAPRA CGC  competition, only one heap bug was 

successfully exploited by the-state-of-the-art systems

• Inefficient: Takes a few seconds, minutes, or even hours for one try

• Application-dependent: A HET, which is not useful in a certain 
application, may be useful in general
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Our idea: Evaluating impacts of exploitations (i.e., detecting 
broken invariants that have security implications)

1. Allocated memory should not be overlapped with pre-allocated 
memory
• Overlapping chunks: Can corrupt other chunk’s data
• Arbitrary chunks: Can corrupt global data

2. An allocator should not modify memory, which is not under its 
control (i.e., heap)
• Arbitrary writes
• Restricted writes

Easy to detect: Check 
this at every allocation

How about this?
(NOTE: should be efficient)
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Shadow memory can detect arbitrary writes 
and restricted writes
• Maintain external consistency • Check divergence

container[i] = malloc(sz)
containershadow[i] = malloc(sz)

Allocation

buf[i]=v

Buffer write

bufshadow[i]=v

malloc(sz)
Allocation

free(p)
Deallocation

p[i]=v
Heap write buf[i]=v

Buffer write

CHECK: equal(container, containershadow)
equal(buf, bufshadow)

Divergence can only happen 
in the internal of allocators
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ArcHeap provides a minimized PoC code for 
further analysis
• Proof-of-Concept code: Converting actions into C code
• Trivial, because they have one-to-one mapping

• Minimize the PoC code using delta-debugging
• Idea: Eliminate an action, which is not necessary for triggering the impact of 

exploitations
• Details can be found in our paper
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Evaluation questions

1. How effective is ArcHeap in finding new HETs, compared to the 
existing tool, HeapHopper?

2. How general is ArcHeap’s approach?
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ArcHeap discovered five new HETs in ptmalloc2, 
which cannot be found by HeapHopper
• Unsorted bin into stack: Write-after-free à Arbitrary chunk
• Requires fewer steps (5 steps vs 9 steps)

• House of unsorted einherjar: Off-by-one write à Arbitrary chunk
• No require heap address leak

• Unaligned double free: Double free à Overlapping chunk
• First HET targets small bin chunks, which have more checks than fast bin 

• Overlapping chunks using a small bin : Overflow à Overlapping chunk

• Fast bin into other bin: Write-after-free à Arbitrary chunk

All HETS cannot be discovered by HeapHopper because of its 
scalability issue (i.e., symbolic execution + model checking)
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ArcHeap is generic enough to test various 
allocators
• Tested 10 different allocators
• Cannot find HETs in LLVM Scudo, FreeGuard, and Guarder, which are “secure 

allocators” 

Works for ptmalloc2-
unrelated allocators

Even found HETs in 
“secure” allocators

26



Case study1: Double free à Overlapping 
chunks in DieHarder and mimalloc-secure

// [PRE-CONDITION]
// lsz : large size (> 64 KB)
// xlsz: more large size (>= lsz + 4KB)
// [BUG] double free
// [POST-CONDITION]
// p2 == malloc(lsz);
void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);

// [BUG] free 'p0' again
free(p0);

void* p2 = malloc(lsz);
free(p1);

assert(p2 == malloc(lsz));

Double free large chunk è
Overlapping chunk

Same thing happens in both 
DieHarder and mimalloc
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Interestingly, these issues are irrelevant

Me: Is mimalloc
related to DieHarder? 

Mimalloc developer: 
No!

free(plarge)

DieHarder

mimalloc

unmap(plarge)

check(plarge)

No 
check!

Wrong 
check!
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Our PoC has been added in a mimalloc’s
regression test
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Case study 2: Overflow à Arbitrary chunk in 
dlmalloc-2.8.6
• dlmalloc: ancestor of ptmalloc2 but has been diverged after its fork

void* p0 = malloc(sz);
void* p1 = malloc(xlsz);
void* p2 = malloc(lsz);
void* p3 = malloc(sz);

// [BUG] overflowing p3 to overwrite top chunk
struct malloc_chunk *tc = raw_to_chunk(p3 + chunk_size(sz));
tc->size = 0;

void* p4 = malloc(fsz);
void* p5 = malloc(dst - p4 - chunk_size(fsz) \

- offsetof(struct malloc_chunk, fd));
assert(dst == malloc(sz));

Looks complicated…
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Its root cause is more complicated!
// Make top chunk available
void* p0 = malloc(sz);
// Set mr.mflags |= USE_NONCONTIGUOUS_BIT
void* p1 = malloc(xlsz);
// Current top size < lsz (4096) and no available bins, so dlmalloc calls sys_alloc
// Instead of using sbrk(), it inserts current top chunk into treebins
// and set mmapped area as a new top chunk because of the non-continous bit
void* p2 = malloc(lsz);
void* p3 = malloc(sz);
// [BUG] overflowing p3 to overwrite treebins
struct malloc_chunk *tc = raw_to_chunk(p3 + chunk_size(sz));
tc->size = 0;
// dlmalloc believes that treebins (i.e., top chunk) has enough size
// However, underflow happens because its size is actually zero
void* p4 = malloc(fsz);
// Similar to house-of-force, we can allocate an arbitrary chunk
void* p5 = malloc(dst - p4 - chunk_size(fsz) \

- offsetof(struct malloc_chunk, fd));
assert(dst == malloc(sz));

Easy to miss by manual analysis 
è Shows benefits of
automated methods!
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Discussion & Limitations

• Incompleteness: Unlike HeapHopper that is complete under its model
• But HeapHopper’s model cannot be complete because of its scalability issue

• Overfitting: Our strategy might not work for certain allocators 
• In practice, our model is quite generic: found HETs in seven allocators out of 

ten except for secure allocators

• Scope: ArcHeap only finds HETs and does not generate end-to-end 
exploits for an application
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Conclusion

• Automatic ways to discover HETs
• Model-based search based on common designs of allocators
• Shadow-memory-based detection

• Five new HETs in ptmalloc2 and several ones in other allocators
• Including secure allocators, DieHarder and mimalloc secure

• Open source: https://github.com/sslab-gatech/ArcHeap
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Thank you!
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