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Abstract—Cellular basebands play a crucial role in mobile
communication. However, it is significantly challenging to assess
their security for several reasons. Manual analysis is inevitable
because of the obscurity and complexity of baseband firmware;
however, such analysis requires repetitive efforts to cover diverse
models or versions. Automating the analysis is also non-trivial
because the firmware is significantly large and contains numerous
functions associated with complex cellular protocols. Therefore,
existing approaches on baseband analysis are limited to only a
couple of models or versions within a single vendor.

In this paper, we propose a novel approach named BASESPEC,
which performs a comparative analysis of baseband software and
cellular specifications. By leveraging the standardized message
structures in the specification, BASESPEC inspects the message
structures implemented in the baseband software systematically.
It requires a manual yet one-time analysis effort to determine how
the message structures are embedded in target firmware. Then,
BASESPEC compares the extracted message structures with those
in the specification syntactically and semantically, and finally, it
reports mismatches. These mismatches indicate the developer’s
mistakes, which break the compliance of the baseband with the
specification, or they imply potential vulnerabilities. We evaluated
BASESPEC with 18 baseband firmware images of 9 models from
one of the top three vendors and found hundreds of mismatches.
By analyzing these mismatches, we discovered 9 erroneous cases:
5 functional errors and 4 memory-related vulnerabilities. Notably,
two of these are critical remote code execution 0-days. Moreover,
we applied BASESPEC to 3 models from another vendor, and
BASESPEC found multiple mismatches, two of which led us to
discover a buffer overflow bug.

I. INTRODUCTION

A baseband processor (BP) of cellular devices such as smart-
phones plays an important role in cellular networks. Although
users mainly interact with the interface of user applications
running on an application processor, all application data are
transferred by the BP to use its radio interface. The BP runs
the software, which is typically a real-time operating system
dedicated to managing the radio communication; therefore, it
includes low-level digital signal processing and complicated
cellular protocol stacks. To provide seamless network services
to users, the baseband software continuously communicates
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with a core network using numerous cellular control plane
messages at layer 3 (L3) [4].

The baseband software is an alluring attack target because
it can be used to monitor and modify the transferring data if
it is exploited. Therefore, researchers have proposed several
approaches to analyze its security, particularly for the L3
protocols. To discover security bugs in their implementation,
researchers dynamically analyzed specific protocols, such as
SMS or cell broadcast messages, using fuzzers [47], [46], [63],
[42], or they manually inspected a small portion of baseband
software in an ad-hoc manner [25], [15], [64].

These approaches suffer from mainly three technical chal-
lenges: the obscurity of baseband firmware, limited applicability
of manual analysis, and difficulties in automation. First, the
structure of baseband firmware is obscure as vendors are
reluctant to publish their details. Second, to uncover this
obscurity, a manual analysis is inevitable, which requires
significant repetitive efforts to investigate numerous functions
(i.e., over 90K) across diverse baseband models or versions.
Third, automating is thus necessary, but it is also non-trivial.
The size of the baseband software is extremely large (i.e.,
tens of MB) and cellular protocols contain numerous complex
states, which can be neither statically analyzed nor dynamically
triggered by fuzzers. In addition, identifying bugs requires
an explicit oracle, such as a program crash or a noticeable
abnormal behavior; therefore, it is limited to a few bug types.
Thus, existing approaches can analyze only a couple of device
models or versions within a single vendor.

To address these challenges, we propose a novel system
named BASESPEC, which performs a comparative analysis
of baseband implementation and cellular specifications, by
leveraging the nature of a baseband as a modem for network
communication. BASESPEC’s key intuition is that a message
decoder in baseband software embeds protocol specifications
in a machine-friendly structure to parse incoming messages;
hence, the embedded protocol structures can be easily extracted
and compared with reference to the specification. This enables
BASESPEC to automate the entire comparison process and
explicitly discover mismatches in the protocol implementation,
which are non-compliant to the specification. These mismatches
can directly pinpoint developers’ mistakes when embedding
the protocol structures or hint at potential vulnerabilities.

For the comparative analysis, BASESPEC first analyzes
baseband firmware to identify the message decoder and extracts
embedded protocol structures in the firmware. Then, it compares
the extracted structures with the specification in two aspects:
1) whether the embedded structures are syntactically equivalent
to the specification, and 2) whether the decoder function
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Fig. 1: Overall cellular network architecture

semantically follows the specification. Thus, a comparative
analysis between the actual implementation and specification
can explicitly identify mismatches. Then, we manually analyze
those mismatches to verify if they can produce functional or
security bugs. Note that BASESPEC requires an initial analysis
of target firmware to locate the decoder function and determine
how the message structures are embedded in the firmware.
This may require considerable manual efforts; however, this
analysis is only a one-time task. The knowledge obtained
from this analysis can be reused for other baseband models
or versions. This is because the main decoding logic rarely
changes across diverse baseband models or versions within a
vendor. Meanwhile, the automated comparison procedure can
be reused across other vendors once their firmware is analyzed.

With a prototype of BASESPEC, we analyzed the imple-
mentation of standard L3 messages in 18 baseband firmware
images of 9 device models from one of the top three vendors.
BASESPEC identified hundreds of mismatches that indicate
both functional errors and potentially vulnerable points in the
baseband implementation. We investigated their functional and
security implications and discovered 9 erroneous cases affecting
33 distinct messages: 5 of these cases are functional errors and
4 of them are memory-related vulnerabilities. Notably, 2 of
the vulnerabilities are critical remote code execution (RCE)
0-days. To evaluate the applicability of BASESPEC, we also
applied BASESPEC to 3 models from a different vendor in the
top three. Through this analysis, BASESPEC identified multiple
mismatches, two of which led us to discover a buffer overflow.

In summary, our contributions are as follows:

• We propose a novel approach named BASESPEC for discover-
ing bugs in cellular baseband software. BASESPEC performs a
comparative analysis of embedded specifications in baseband
software and documented ones.

• We demonstrate the practicality of BASESPEC. By running an
automated prototype of BASESPEC on 18 baseband firmware
images of 9 models from one of the top three vendors, we
identified hundreds of mismatches, which are non-compliant
with the specification.

• By further analyzing the mismatches, we discovered 9
erroneous cases, of which 5 are functional errors and 4
are vulnerabilities including 2 RCE 0-days. We responsibly
disclosed all findings to the vendor.

• Applying BASESPEC to 3 firmware images from another
vendor identified multiple mismatches, two of which cause a
buffer overflow bug.

II. BACKGROUND

A. Cellular Architecture

A cellular network has three main components, namely,
a cellular device, base station, and core network, as shown
in Figure 1. These components have different terms per cellular

TABLE I: Protocols grouping standard L3 messages. The first column
represents a 4-bit protocol discriminator (PD). The fifth denotes the
document version that we used for comparison (§VII); the last column
represents whether the protocol is implemented in the baseband binary.

Implemented
PD Description Abbrev. Spec No. Version in firmware

0 Group Call Control GCC 44.068 - -
1 Broadcast Call Control BCC 44.069 - -
2 EPS Session Management ESM 24.301 v15.8 ✓
3 Call control; call related SS CS 24.008 v15.8 ✓
4 GPRS Transparent Transport Protocol GTTP 44.018 - -
5 Mobility Management MM 24.008 v15.8 ✓
6 Radio Resources Management RR 44.018 v15.5 ✓
7 EPS Mobility Management EMM 24.301 v15.8 ✓
8 GPRS Mobility Management GMM 24.008 v15.8 ✓
9 Short Message Service SMS 24.011 v15.3 ✓
10 GPRS Session Management SM 24.008 v15.8 ✓
11 non-call related Supplementary Services SS 24.080 v15.1 ✓
12 Location Services LCS 23.271 - -
14 Reserved for extension - - - -
15 Tests procedures - 36.509 - ✓

generation; here, we use generic terms for simplicity. For
example, NodeB, eNodeB, and gNodeB represent the base
stations for 3G, 4G, and 5G, respectively.

A cellular device refers to any device located at the edge
of a cellular network, and it allows users to access cellular
services; the most common device is a smartphone. A cellular
device usually has two separate processors for performance:
an application processor (AP), on which the mobile operating
systems and user applications run, and a cellular BP, where
radio/digital signal processing is performed.

A base station offers a wireless connection to cellular
devices. It transmits messages, which are from the core
network to a cellular device and vice versa, through the radio
interface. Thus, it is responsible for managing radio resources
to provide users better service quality. A core network provides
core procedures such as mobility management and session
management, which include crucial user identification and
security services such as encryption and integrity checks.

The cellular protocol stack has multiple layers as the OSI
model. The air interface of a cellular network is at layers 1
and 2 of the OSI model. Various core procedure messages
are delivered on layer 3. To appropriately handle these layers,
the baseband of a cellular device also implements the cellular
protocol stack. Further, to provide backward compatibility for
cell coverage and roaming, the latest 4G/5G cellular devices
also support earlier 2G/3G cellular technologies.

B. Cellular Specifications and Standard Layer 3 Messages

The cellular specification is defined by an international work-
ing group called the 3rd Generation Partnership Project (3GPP),
which unites seven telecommunications standard development
organizations such as ETSI. There are over 100 specification
documents, and most documents have hundreds of pages.
Because of their enormous quantity and complexity, many
mistakes have been observed in their implementations [47],
[46], [63], [64], [25], [15], [42], [39], [23], [54], [51], [57].

Among the various protocols and messages in the spec-
ification, the standard layer 3 (L3) messages are used in
complex core procedures, such as mobility management, session
management, or even cryptographic operations to protect private
information of users. Thus, multiple vulnerabilities have been
found in their processing routines [64], [25], [15], [42]. The
standard L3 messages are not only limited to a specific cellular
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generation, such as GSM or LTE, but they also include several
different protocols over generations [3]. Table I lists the L3
protocols, their protocol discriminators (PDs), and specification
document numbers. Each specification document defines the
detailed message formats and directions in the corresponding
protocol. An L3 message can be transmitted to a cellular
device (i.e., downlink) or to the core network (i.e., uplink).
Furthermore, the L3 message may have different formats based
on the direction in which it is transmitted. Hereinafter, we use
the abbreviations listed in Table I to denote each L3 protocol.

Standard L3 message formats. Each standard L3 message
has a specific format defined in the corresponding specification
document (Table I) [3]. A standard L3 message starts with a
2-byte header that includes a PD and message identity. A tuple
of a PD and message identity allows a recipient baseband to
determine the format of a given message in order to decode
the message. Each successive field of a message is referred to
as a standard information element (IE).

A standard IE may have three parts: an IE identifier (IEI),
a length indicator (LI), and a value, which are also referred to
as a type (T), length (L), and value (V), respectively. An IE
can be either imperative or non-imperative, according to the
occurrence of an IEI. Imperative IEs do not have IEIs, whereas
non-imperative IEs must have IEIs. In a message, imperative
IEs must appear in a fixed order ahead of non-imperative IEs;
thus, they can be distinguished without an IEI. An LI denotes
the number of bytes for the value part, whereas the IE length
in the specification represents the number of bytes for all parts.
There are seven IE formats: T, V, TV, LV, TLV, LV-E, and TLV-E.
Here, T, L, and V represent the occurrence of an IEI, LI, and
value in an IE, respectively. The -E suffix extends the one-byte
LI to a two-byte LI, which indicates a length from 0 to 65535.

Figure 2 shows an example message called ATTACH REJECT
in the EMM procedure with raw packet data. Each row in
the message structure represents an IE. The header comprises
the 4-bit PD (0x7), 4-bit security header type (0x0), and 8-
bit message identity (0x44). Further, imperative IEs include
a non-header part IE, EMM cause. The packet then continues
with non-imperative IEs: ESM message container and T3346
value, of which IEIs are 0x78 and 0x5f, respectively. Because
the format of the ESM message container IE is TLV-E, its LI
can indicate a length from 0 to 65535. The length of the T3346
value IE is fixed to be 3 although it takes an LI.

C. Baseband Processor

In a cellular device, a BP is a dedicated processor responsi-
ble for managing all radio functions for cellular communication

including digital signal processing. To meet the real-time
requirements for radio communication, it runs a real-time
operating system as its firmware Thus, its firmware operates
as a single executable and is loaded into memory at runtime;
thus, we refer to baseband firmware as a baseband binary.

Baseband software is typically proprietary, and manufactur-
ers do not publicly share detailed information such as the source
code. For instance, Qualcomm’s Snapdragon, MediaTek’s Helio,
and Samsung’s Exynos are the top 3 system-on-a-chip products
that contains a BP [17]. However, none of these manufacturers
share the detailed information. Therefore, researchers often
perform reverse engineering to analyze and identify security
problems in the baseband software. In addition, each baseband
may have a different architecture according to its design
choice. Thus, baseband analyses require an appropriate tool
that supports the target baseband architecture.

L3 message processing. In the baseband, an L3 message
is first classified by its PD and message identity. Then,
the baseband parses and decodes the message to obtain the
information of the IEs, using the pre-defined message structures.
After decoding the message, it performs an appropriate action
for each decoded IE, and finally, it processes the message as
defined in the specification. Hereafter, we refer to the functions
involved in the decoding procedure as L3 message decoders, and
those for the message processing as IE and message handlers.

III. OVERVIEW

A. Challenges

There are mainly three technical challenges that hinder the
existing approaches in finding the bugs in baseband firmware.

C1. Obscurity of baseband firmware. Cellular baseband
firmware remains largely unknown because vendors do not
make its details public to protect their proprietary implemen-
tations. This obscurity severely hinders the analysis of the
firmware, thereby requiring significant manual efforts for the
analysis. To reduce the manual efforts, memory dumps are
often used as they already processed the initializing steps and
include runtime information [25], [15]. However, obtaining
them requires real devices, and a special feature (e.g., a
hidden dump menu only available in old Android devices) or a
vulnerability to trigger it. One can consider using a hardware
debug interface, such as JTAG; however, it is also disabled in
recent devices. Further, even memory dumps cannot be analyzed
by state-of-the-art binary analysis tools such as IDA Pro [31];
for example, function identification, which is fundamental for a
static analysis, often fails because of the firmware’s obscurity.

C2. Limited applicability of manual analysis. To uncover
the obscurity of baseband firmware, researchers have focused
on a manual analysis [64], [25], [15]. However, this method is
fundamentally limited in scalability and applicability because
manually investigating numerous functions for hundreds of L3
messages is nearly impossible. Therefore, even similar types of
vulnerabilities often remain undiscovered. In addition, as mobile
devices are quickly evolving in their software and hardware,
their firmware binaries have significant differences one another.
Consequently, inspecting the firmware of diverse device models
or versions, even within a single vendor, remains challenging,
requiring additional, serious manual efforts.
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C3. Difficulties in automated analysis. Automating the
baseband analysis is essential to achieve scalability and
applicability. An automated analysis can be largely divided
into static and dynamic analyses; however, both methods
have several challenges. A static analysis suffers from that
baseband firmware is extremely large (i.e., tens of MBs), and
it contains numerous non-trivial features to analyze, such as
cryptographic operations. Moreover, building analysis rules is
challenging because cellular specifications are quite complex,
written in over 100 documents. Therefore, existing studies
highly rely on a dynamic analysis (e.g., fuzzing) with real or
emulated hardware [47], [46], [63], [64], [42]. Unfortunately,
many vulnerabilities in the baseband are difficult to trigger
dynamically owing to its convoluted states. These approaches
also rely on an explicit oracle such as a program crash to
identify bugs, thereby limiting them to a few bug types.

B. Our Approach

To tackle these challenges, we propose a novel approach
named BASESPEC, which performs a comparative analysis
of baseband firmware and cellular specifications. BASESPEC
leverages the natural characteristics of a message decoder
in network communication. Our key intuitions are that 1) a
message decoder in the network communication needs to embed
specifications in its implementation, particularly the message
structures, to be able to identify and parse the message fields;
2) As such embedded message structures exist in a machine-
friendly form, we can certainly extract them; 3) Comparative
analysis on the extracted structures may identify incorrectly
embedded ones with reference to the specification documents;
4) As the main logic of decoding routines rarely changes,
message structures can be extracted across diverse device
models/versions, similarly. Hereafter, we refer to the embedded
specifications and message structures in baseband firmware as
binary-embedded specifications/messages.

A workflow of our approach is illustrated in Figure 3. Our
approach is largely divided into two parts: manual firmware
analysis and fully automated BASESPEC. The firmware analysis
mainly explores where the message decoder are located (§IV-C)
and how specifications are embedded (§IV-D) in the baseband
firmware, which we refer to as binary-specific metadata. This
procedure is a manual, yet one-time task because the main logic
of decoding procedure rarely changes across diverse device
models or versions within the same vendor. Then, BASESPEC
utilizes these results for syntactic/semantic comparison. Specif-
ically, BASESPEC automates the extraction of the decoder
function address and embedded message structures from the
target baseband binary. Syntactic comparison literally validates
whether the binary-embedded specifications match those of
the documentations (§V-C). Meanwhile, semantic comparison
investigates whether the underlying logic of the decoder

function correctly follows the specification leveraging symbolic
execution (§V-D). Finally, it reports mismatches, which indicate
developers’ mistakes, which may break the compliance with
the specification, or imply potentially vulnerable points for later
analysis. Thus, we only need to analyze the messages affected
by the reported mismatches.

We address the challenges described in §III-A as follows.
First, we uncover the firmware’s obscurity by manually an-
alyzing the firmware, particularly the L3 message decoders
(C1). This analysis can be reused for other baseband firmware;
i.e., it is a one-time task. Second, BASESPEC automatically
identifies mismatches from numerous L3 messages and reveals
potentially buggy points for analysis (§VII-B); thus, it enables
an efficient and practical analysis (C2). Indeed, by analyzing
the mismatches reported by BASESPEC, we discovered 9 error
cases, of which 5 are functional errors and 4 are vulnerabilities
including 2 RCE 0-days (§VII-C). Finally, as the main decoding
logic rarely changes, BASESPEC is applicable to various device
models or versions with automation (C3) (§VII-D). It can be
also applied to other vendor’s firmware although it requires
one-time manual efforts to analyze its decoder (§VII-E).

C. Scope of This Work

Among the various protocols in the cellular network, we
choose standard L3 messages as our target. These messages
include various protocols and play an important role in the cel-
lular core procedures (§II-B). As the L3 protocol has numerous
complicated logic and data structures, several vulnerabilities
have been discovered in their implementations [25], [15], [42].
Therefore, we focus on analyzing the standard L3 messages as
listed in Table I. Not all messages in L3 protocols are marked
as the standard L3 messages; these other messages are beyond
the scope of this study (§IX). Please refer to §II-B for exact
definition of the standard L3 message.

For the cellular baseband, we mainly focus on one of
the top three mobile processor vendors [17] (i.e., Vendor1).
We analyze their baseband firmware on multiple latest device
models (Table IV) whose architecture is ARM.1 Our approach
can apply to other baseband firmware; however, it may require
considerable manual efforts to uncover the obscurity of their
firmware. We additionally analyzed the firmware of another
one of the top three vendors (i.e., Vendor2) and successfully
applied BASESPEC (§VII-E).

IV. MANUALLY UNCOVERING FIRMWARE OBSCURITY

This section details our approach to uncover the obscurity of
baseband firmware. We describe how we handle several issues in
the state-of-the-art static analysis tool named IDA Pro (§IV-B),

1We anonymized the names of devices and vendor upon the vendor’s request.
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locate the L3 decoding function (§IV-C), and determine the way
of message structures are embedded (§IV-D). Recall that the
obscurity and complexity of baseband firmware makes a manual
analysis essential (§III-A). However, the analysis procedure is
a one-time task, of which results can be reused for multiple
messages, models, or versions within the same vendor; this will
be shown in §VII-D. This section mainly shares our experience
in analyzing Vendor1’s firmware. However, similar approaches
can be applicable to other vendors’ firmware, although it may
require considerable efforts to determine their L3 message
decoding logic, and we will describe this in §VII-E.

A. Firmware Acquisition

We chose baseband firmware as our analysis target without
requiring physical devices because of its applicability and
accessibility. There are mainly two methods to obtain baseband
firmware: memory dumps and firmware images. Previous
studies [25], [15] relied on a memory dump because it contains
runtime memory states, a memory layout, and global variables,
which do not require complicated analyses for firmware
initialization. However, this method requires a real device to
dump memory; hence, it significantly degrades scalability and
applicability. Moreover, we found that the hidden menu to
trigger the memory dump or a hardware debug interface, such
as JTAG, has been disabled in the recent devices.

Therefore, we decided to use a third-party website [62] that
maintains firmware images for updates. One can also download
the latest firmware images from the vendor’s cloud storage.
However, the third party storage provides a well-structured list
of firmware images per product model and version. Among
them, we selected the images of the latest flagship models as
listed in Table II. For an initial firmware analysis, we need to
analyze only a single image to break down its obscurity. Then,
we can apply the knowledge to other images within the same
vendor. Therefore, we selected to analyze the latest version of
the latest model (i.e., Model A in Table II).

B. Preprocessing

We analyze the baseband firmware with IDA Pro [31], which
is a state-of-the-art binary analysis tool. Although IDA Pro is a
promising tool, it requires additional preprocessing steps for 1)
memory layout analysis and 2) function identification. Because
of several run-time mechanisms in the baseband firmware, IDA
Pro correctly identifies only hundreds among 90K functions in
it. Such a limitation is already known to be challenging [9].
Without any preprocessing, IDA’s automatic analysis can detect
only 450 functions starting from interrupt handlers, which
are common entry points of embedded devices (see Table II).
Therefore, we design the two preprocessing steps as follows.

Memory layout analysis. For analysis, the baseband firmware
should be loaded in a proper memory layout. Otherwise, data or
function pointers in the firmware would point to invalid memory
addresses, which significantly hinders further analysis. Indeed,
when we opened the firmware using IDA, the data/function
pointers in most functions attempted to access data or call other
functions located in invalid memory addresses.

We discovered that this invalid pointer issue is caused by
scatter-loading, and IDA fails to support it. Scatter-loading is an
ARM’s loading mechanism that reallocates the initially loaded

file to multiple memory regions at runtime. This technique
is widely used in ARM-based embedded systems because
it supports compression of data regions, thereby reducing
the firmware size. When building firmware, a component
in the ARM compiler, named armlink, inserts functions for
scatter-loading for initializing the firmware at runtime. These
functions copy, decompress, or zero-initialize the memory
regions according to a predefined table to properly set up
the memory layout. Therefore, without handling the scatter-
loading, an entire binary file is loaded into a single continuous
memory region, which makes the data/function pointers invalid.

To handle the scatter-loading issue and create a proper mem-
ory layout, we emulate the scatter-loading process. Specifically,
we mimic the behavior of the scatter-loading functions: we copy,
decompress, and zero-initialize the memory regions. Because
those scatter-loading functions are predefined by armlink in
highly optimized forms, most recent ARM embedded devices
reuse these functions. Thus, we can detect these functions
with signatures similarly to IDA’s FLIRT [30]. After detecting
the scatter-loading functions, we analyze their cross-references
and identify the predefined scatter-loading table. This table
contains information that indicates the execution sequence and
parameters of the scatter-loading functions. We emulate the
scatter-loading process as stated in the table.

Function identification. Our target (i.e., Vendor1’s firmware)
is based on the ARM architecture. To identify functions
in the firmware, we need to disassemble its byte code in
advance. However, disassembling unknown bytes in ARM is
error-prone [36] because the ARM architecture supports two
instruction sets: ARM and Thumb. The ARM instruction set
is the default mode that executes 32-bit instructions, and the
Thumb instruction set supports compact 16-bit instructions
to reduce the code size. Because the same bytes can be
disassembled in two different instructions, direct disassembling
would lead to many incorrectly disassembled codes.

To tackle this challenge, we designed two simple tech-
niques that leverage i) frequent function prologues and ii) the
characteristics of function pointers in the Thumb mode. First,
we build function prologue signatures that can distinguish
between the ARM and Thumb modes by investigating the
identified functions. These prologue signatures comprise PUSH
instructions in both ARM and Thumb mode. We then search
those signatures; if a match is found, we attempt to analyze
it in the mode of the matched signature. To reduce false
positives in signature-based matching, we verify whether the
function prologue handles registers normally. For instance, most
functions push the LR register in stack but do not push the PC
register; hence, we discard prologues that push the PC register
or those that do not push the LR register.

After detecting the function prologues, we further identify
functions by analyzing function pointers in the data section.
For this, we leverage the characteristics of the Thumb mode.
Function pointers to the Thumb mode functions use odd
numbered addresses; particularly, the least significant bit of the
pointer value is always 1. As most data are aligned with an
even address, an odd numbered address that points to a code
section can be a Thumb mode function pointer. Therefore, we
can find functions that are called indirectly via such pointers.

Preprocessing results. These preprocessing techniques signif-
icantly improve the IDA’s performance in identifying functions.
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TABLE II: Number of newly identified functions in baseband
firmware by our preprocessing; numerous functions were hidden under
the IDA Pro’s default analysis (i.e., before our preprocessing).

# of Funcs

Firmware Firmware Before Our After Our Elapsed
Model Build Date Size (MB) Preprocessing Preprocessing Time (s)

Model A May/2020 44.09 450 91,481 8,442
Model B May/2020 44.06 3,505 90,519 2,219
Model C May/2020 43.82 444 90,328 3,171
Model D Jun/2020 41.38 409 73,199 1,451
Model E Jun/2020 41.40 409 83,725 3,434
Model F Apr/2020 41.78 410 39,003 1,045
Model G Apr/2020 41.21 410 31,888 1,112
Model H Apr/2020 37.46 380 35,216 790
Model I Apr/2020 37.09 379 58,974 1,347

The initial number of functions identified by IDA Pro was
450 for Model A, as shown in Table II. We applied the
memory layout analysis and function identification, which
consists of the prologue detection and pointer analysis, to
the same firmware. Our memory layout analysis found 504
new functions, and our function identification techniques, i.e.,
the function prologue detection and function pointer analysis,
found 31,955 and 2,526 new functions, respectively. If we
give these newly identified functions to IDA Pro, it further
analyzes the code references in each function and recursively
finds more functions. Consequently, our preprocessing steps
helped IDA Pro to identify 91,481 functions eventually. The
preprocessing is merely a one-time task, and it can apply to
the firmware of other device models without any other manual
effort. In practice, we can successfully preprocess the other
latest models as listed in Table II. The average time spent on
the full preprocessing including the IDA’s auto-analysis was
2,557 s. Sometimes, IDA found more functions before the
preprocessing (Model B’s case), or its auto-analysis required
more time (Model A’s case). We are inspecting these outliers.

C. Identifying Layer 3 Decoder

To investigate the standard L3 messages (§III-C), we first
need to locate their decoding logic through binary analysis.
We call the functions implementing this decoding logic as
decoder functions. We focus on the decoder functions because
they have machine-friendly information for the L3 messages
structures. As described in the §II-B, the L3 protocol messages
have a standardized structure. To properly parsing the messages,
developers embed message structures from the specification,
in a machine-friendly format. Therefore, we can analyze the
embedded structure systematically and understand how the
firmware decodes the L3 messages.

To identify the decoders, we utilize debug information
(e.g., logging messages) left by developers in the baseband
binary. Note that this debug information is different from that
inserted by compilers with the -g option, which disappear
if a binary is stripped. We describe the details in the next
paragraph. We select this approach among various methods in
binary analysis because debug information is commonly used
in practice for finding a specific function in a stripped binary
when analyzing embedded devices [20], [25], [15]. Baseband
firmware is stripped and extremely large (over 30MB) composed
of numerous functions (over 90K), which makes it significantly
challenging to discover an L3 decoder without such information.
Therefore, we utilize debug messages and share their details
below as an example for further research. Similarly, we found an
L3 decoder function in another vendor’s firmware using debug
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Fig. 4: Relationship between specification document and binary

information, although the structure of debug information in it
is different (§VII-E). Meanwhile, our ultimate goal, which is
conducting a comparative analysis on the standard L3 messages,
does not depend on how the decoder function is identified. Other
techniques can also be used for this process.

We first search all debug information in the baseband
binary and then analyze functions that refer to only the
corresponding debug information of interest. While searching
debug information, we noticed that the firmware uses a specific
structure to log debug messages and information. The structure,
which starts with a magic value DBT, contains a debug message
along with the file path and the line number where it is
referenced. Therefore, we first search all debug information
using DBT. Because numerous functions reference the debug
information indirectly (≈100K cases), we perform a lightweight
backward slice analysis to match the debug information with
functions correctly. Next, we categorize each function based on
the file path in the debug information, as the functions in the
same layer or library may share the path. After categorization,
we find L3 functions using debug messages and paths that
contain keywords such as L3, SS, EMM, or NAS. Then, we
find functions related to decoding incoming messages using
keywords such as decode, codec, and names of several IEs.
Consequently, we identified a function that parses standard L3
messages. We found that a single decoder function decodes
all standard L3 messages regardless of their protocols, as
these messages have the same standardized structure (§II-B).
Therefore, a single decoder would suffice to handle them.

D. Obtaining Binary-embedded Message Structures

Finally, we determine how the standard L3 message struc-
tures are embedded in the baseband binary. To achieve this,
we analyze the decoder function and its data references. The
simplified architecture of the embedded message structure is
illustrated in Figure 4 with the EMM ATTACH REJECT message
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as an example. The embedded message structures are encoded
as a hierarchical structure of four types of lists:

• Protocol List (Figure 4 (a)) is the top-level list of the
hierarchy. It holds pointers to the Msg List of each L3
protocol and is indexed by PDs. As the PD of the EMM
protocol is 7, the 7th item in the Protocol List is accessed
in the example.

• Msg List (Figure 4 (b)) is defined for each protocol. It holds
pointers to the Msg IE List of each message in the protocol
and is indexed by message identity values. In the example,
as the message identity of the EMM ATTACH REJECT message
is 0x44, its Msg IE List is accessed using 0x44.

• Msg IE List (Figure 4 (c)) is defined for each message. It
contains the imperative flag and index for each IE in the
message. The imperative flag shows whether the IE is encoded
as imperative or non-imperative in the message, and the index
represents the location of the IE in the Global IE List. As
shown in the example, the first three of the IEs — PD, security
header type, and message type — in the EMM ATTACH REJECT
message are not listed in the Msg IE List because they are
common IEs for all messages.

• Global IE List (Figure 4 (d)) contains information of all
IEs used in the L3 protocols and is accessed by the index
assigned for each IE. The information consists of the length
and IEI of the IE. Note that the length here indicates the size
of only the value part, whereas the length in the specification
document indicates thee total size of the IE (§II-B).

We extract all embedded message structures by iterating
these lists. From the firmware analysis, we can eventually notice
how to obtain the L3 decoder address and message structure
information in the firmware. With this knowledge, we automate
BASESPEC as described in the next section.

V. BASESPEC DESIGN

This section describes BASESPEC’s design in detail. Fig-
ure 3 illustrates the overview of BASESPEC. BASESPEC
automatically reports mismatches by comparing the message
structures in the baseband firmware and those in the spec-
ification documents. To this end, BASESPEC first extracts
messages structures from specifications (§V-A) and those from
the firmware with the binary-specific metadata (§V-B). Then,
it syntactically compares the structures in the specification
to binary-embedded ones (§V-C) and semantically examines
their implementation logic using symbolic execution (§V-D).
Based on these comparisons, BASESPEC reports various types
of mismatches between the specification and implementations.
BASESPEC reports suspicious IEs that exist only in binary
(i.e., unknown mismatches) or specifications (i.e., missing
mismatches). Moreover, it reports IEs with different length
(i.e., invalid mismatches). After obtaining the mismatch results,
we can further analyze their implications (§V-E).

A. Extracting Message Structures from Specification Documents

To inspect L3 message structures in the baseband firmware,
BASESPEC extracts reference structures from the specification
documents. The 3GPP and its partner organizations provide
the specification documents on their websites [1]. BASESPEC
downloads the latest specification documents listed in Table I
and converts them into a raw text format. Then, it extracts
the message structures from the converted raw text using

regular expressions. The message structures in the specification
documents include two parts, namely, message contents, which
are a list of IE formats, and a list of message types for each L3
protocol, as illustrated in Figure 4. BASESPEC automatically
parses those structures for each standard L3 message.

Although this text processing seems trivial, BASESPEC
needs to address several problematic situations listed below.

Conversion errors. Converting a specification document into
a raw text format introduces several types of errors. The
specification documents are in human-friendly forms such as
Microsoft Word (i.e., DOC) or Adobe (i.e., PDF) format. Their
visual richness (e.g., tables and figures) helps readers understand
these documents more thoroughly. However, BASESPEC needs
to convert the documents into machine-understandable formats
for a systematic analysis; converting these human-friendly
documents into the raw text format relies on error-prone
methods such as OCR [24]. Thus, such conversion often results
in several errors including incorrect or missing words/sentences.

To mitigate such conversion errors, BASESPEC co-utilizes
different document formats. The 3GPP and ETSI provide the
same specification documents in two different formats: DOC file
on the 3GPP and PDF file on ETSI. We found that conversion
errors from each format are deterministic and complimentary.
For example, when processing the specification documents
of EMM and ESM messages (Table I), the conversion of
tables for message types in the DOC files failed, whereas the
conversion of PDF files was successful. In contrast, converting
the tables for message contents showed the opposite case.
Therefore, BASESPEC selects the correct raw text between
different conversion results by checking the number of rows of
converted tables; a table having more rows is more likely to be
the correct one. Surprisingly, this approach produced no error.
For conversion, BASESPEC utilizes antiword and pdftotext
for DOC and PDF files, respectively.

Word inconsistencies. BASESPEC has to address many
inconsistent words in the specification documents for text
processing. As the specifications are manually written by
numerous people, such inconsistencies are inevitable, which
makes it difficult to parse the specifications systematically.
These inconsistencies include 5 cases of duplicate and/or
missing words, 14 cases of incorrect spaces between words, 5
cases of abbreviation usages, 14 cases of incorrect delimiters,
and several different terms for denoting a single meaning.
For example, SYSTEM INFORMATION TYPE 15, which is an RR
message [7], is sometimes written as SYSTEM INFORMATION
15. In addition, there are four different names for denoting
downlink (DL) messages which are transferred to a cellular
device: UE, mobile station, MS, and DL. Furthermore, there
is a missing delimiter ’-’ in the length of one IE format in
the DTM ASSIGNMENT COMMAND message [7]. Some table names
have duplicate words, such as Contents of Service Request
message content [4]. We addressed all these inconsistencies
and successfully retrieved message information for comparison.
We reported the issues to 3GPP, so that they could be corrected
for future research applying text processing in this field.

Irregular IE formats. While extracting the message structures
from the specification documents, we found several nested IEs
and invalid IE formats. For example, some SMS messages
could have nested messages [5]; thus, the IEs of the nested
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messages must be checked. We flattened the nested IEs to
compare the message structures properly. Moreover, the CN
to MS transparent information IE in the INTER SYSTEM TO
UTRAN HANDOVER COMMAND message has an invalid TLV format
as it does not have an IEI; an IE with the TLV format should
include an IEI (§II-B). However, this was an exceptional case
defined in the specification [7]. We made exceptions to handle
the above cases when comparing the results.

B. Extracting Binary-specific Metadata

For further analysis, BASESPEC extracts binary-specific
metadata: the information of binary-embedded message struc-
tures for syntactic comparison, and the address of the L3
decoder for semantic comparison. These are distinct across
different baseband binaries. However, BASESPEC can extract
this information regardless of the baseband binaries, and it is
applicable for multiple baseband models or versions (§VII-D).

Given a firmware image, BASESPEC performs all firmware
analysis procedures described in §IV and extracts the binary-
specific metadata. For automating the firmware preprocessing
(§IV-B), BASESPEC searches pre-built signatures of functions
related to scatter-loading similarly to IDA Pro’s FLIRT [30].
Then, it emulates their corresponding functionalities of copy,
decompress, and zero-initialize. BASESPEC then scans the
loaded firmware to detect function prologues and pointers for
the Thumb mode functions. For automating the L3 decoder
identification (§IV-C), we implement backward and forward
slicers to identify L3-related debug structures correctly. Then,
we can identify the L3 decoder by cross-referencing the debug
structure. Finally, BASESPEC locates the address of message
structures from the decoder as the function references the
structures while decoding L3 messages. The message structures
are used in the syntactic comparison, and the information
regarding the decoder is used in the semantic comparison.

C. Syntactic Comparison of Message Structures

BASESPEC first syntactically compares message structures
extracted from the baseband binary with those from the
specification documents, at the IE-level granularity. For each
message from the specification, BASESPEC fetches the corre-
sponding message from the binary using PD and a message type
(§V-C1). Next, BASESPEC iteratively maps IEs in the message
from the specification onto those from the binary according
to their types (i.e., imperative or non-imperative) (§V-C2).
Finally, BASESPEC compares the mapped IEs and reports the
mismatches, which we refer to as syntactic mismatches (§V-C3).
These syntactic mismatches can directly identify developers’
mistakes in embedding message structures in the baseband
binary. We detail the syntactic comparison procedure as follows:

1) Fetching messages: For each message in the specification,
BASESPEC first fetches its corresponding message structure
from the baseband binary using the PD and message identity.
As shown in Figure 5, BASESPEC fetches the corresponding
Msg IE List for the EMM ATTACH REJECT message using a PD
(0x7, red boxes) and a message identity (0x44, yellow boxes)
as indices for the Protocol List and Msg List, respectively.

2) Mapping IEs: Next, BASESPEC maps each IE from the
Msg IE List onto that in the specification. BASESPEC performs
this mapping according to the IE type as an imperative IE and
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a non-imperative IE have distinct formats. For an imperative
IE, BASESPEC relies on its order as it has a fixed order in the
message. For example, in Figure 5, BASESPEC concludes that
the first entry of the Msg IE List represents the EMM cause
IE as it is the first IE, of which the imperative flag is set.
Note that the Msg IE List only contains IEs after the message
identity as the header IEs of the message (i.e., PD and the
message identity) are already used to obtain Msg IE List. For
a non-imperative IE, which can appear in an arbitrary order,
BASESPEC uses its IEI, which is an identifier to distinguish it.
For example, BASESPEC regards the second entry of the Msg
IE List in Figure 5 as the ESM message container IE because
its IEI (0x78) matches that in the specification.

After the mapping process, BASESPEC reports the re-
maining IEs, which are not mapped, as either missing or
unknown mismatches. Missing mismatches indicate IEs that
exist in the specification but are not implemented in the binary.
Meanwhile, unknown mismatches refer to IEs that exist only
in the binary. For example, BASESPEC fails to map the T3346
value in Figure 5 as its IEI (0x5F) does not exist in the
Msg IE List. Therefore, BASESPEC reports this as a missing
mismatch. Similarly, BASESPEC reports the third IE in the Msg
IE List as an unknown mismatch because its IEI (0xff) has
no corresponding IE in the specification.

3) Comparing IEs: BASESPEC finally compares IE pairs
from the mapping and reports the mismatch results. BASESPEC
first needs to convert the IEs in the specification to a comparable
format for the binary. Specifically, BASESPEC adjusts the IE
lengths in the specification because lengths in the binary and
specification are different. A length in the binary only considers
the value part of an IE (i.e., a value length), whereas that in
the specification also includes IEI and LI (i.e., an IE length).
BASESPEC subtracts the size of IEI and LI according to the
format in the specification (§II-B). For example, as shown
in Figure 5, BASESPEC subtracts three bytes from the IE
length of the ESM message container IE to calculate its value
length because its format includes a 1-byte IEI (T) and 2-byte
extended LI (L with -E). Similarly, BASESPEC subtracts two
bytes to the IE length of the T3346 value IE, which has an
IEI (T) with a 1-byte LI (L). BASESPEC does not adjust the IE
length of the EMM cause IE as it only has the value (V).
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Then, BASESPEC compares the adjusted IEs. If their lengths
are different, BASESPEC reports them as invalid mismatches.
For example, in Figure 5, the value lengths of EMM cause
IE is the same in both the specification and the binary; thus,
BASESPEC does not report any mismatch. Meanwhile, the
minimum value length of the ESM message container IE in
the specification (3 bytes) differs from that in the binary (0 byte);
thus, BASESPEC marks this as an invalid mismatch.

D. Semantic Comparison of Message Structures

In addition to syntactic analysis, BASESPEC performs
semantic analysis. Although syntactic analysis can identify
evident mismatches of the message structures, the actual
decoding logic for a given message in the baseband binary
could be different from its syntactic form. To this end, semantic
analysis focuses on how incoming messages are parsed in the
decoder function. BASESPEC reveals the semantic flaws of the
decoder function by discovering mismatches in the handling
of messages between the implementation and the specification;
we refer to these mismatches as semantic mismatches. These
semantic mismatches can imply unintended behavior of the
baseband different from the specification.

For semantic analysis, BASESPEC symbolically executes the
decoder function (§V-D1), whose address is given from §V-B.
Then, BASESPEC converts constraints, which are obtained from
symbolic execution, into IEIs and LIs using their distinct
roles (§V-D2); an IEI distinguishes the non-imperative IEs,
while an LI specifies the size of value part. Next, BASESPEC
builds message structures based on the identified IEIs and LIs,
compares them with structures in specifications similarly to the
syntactic comparison, and finally reports mismatches (§V-D4).
Figure 6 depicts an overall procedure of our semantic analysis
with a sample EMM ATTACH REJECT message.

1) Symbolic execution: BASESPEC analyzes the decoder
function instead of the entire baseband binary following the
concept of under-constrained symbolic execution [50]. Under-
constrained symbolic execution analyzes individual functions
directly without running the entire binary for scalability.
Accordingly, BASESPEC performs symbolic execution from the
entry of the decoder function until it returns. For an efficient
analysis, BASESPEC concretizes the PD and message type, so
that it processes one L3 message at a time. The message body,
namely IEs, remains unconstrained to consider any possible
IEs. For example, the message in Figure 6 has concrete values
for the PD (0x7) and message type (0x44), which indicate
the EMM ATTACH REJECT message. However, the message body
comprises of unconstrained symbolic variables (v1–v4).

Symbolic execution creates the symbolic variables and
constraints; they contain the decoding semantics of IEI and LI.
Each symbolic variable represents one of the IE fields (i.e., IEI,
LI, or value), and each constraint represents how the decoder
processes the fields. In the decoder, conditional branches that
are associated with the symbolic variables produce constraints
of these variables. These constraints can be created by checking
an IEI, in the case of non-imperative IEs, or verifying an LI,
based on the embedded message structure. For instance, the
program states in Figure 6 contain different constraints of
symbolic variables depending on the paths they followed. The
S1 state, which includes a constraint of v2==0x5F, may have
followed a path that decodes an IE with 0x5F as the IEI value.
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Fig. 6: Overview of semantic analysis

Meanwhile, S2, which includes a constraint of v2==0x78, may
have followed another path comparing the IEI with 0x78.

2) Identifying IEI and LI: When a symbolic state reaches
the end of the decoder function, BASESPEC identifies IEIs
and LIs from the collected symbolic variables and constraints.
First, BASESPEC identifies an LI using its usages in memory
addressing. As an LI specifies the size of the value part, the
decoder function uses the LI in the address calculation to access
the following IE. For instance, in Figure 6, suppose v3 is an LI
located at address A. Then, v4 and its following bytes are the
value part with the length v3. Thus, when the decoder function
want to access the next IE, it will use A+v3+1 as the address of
the IE. Therefore, symbolic variables for an LI can be identified
by checking whether they are used in any address. Further, a
2-byte LI that has a -E suffix format can be identified similarly.
The last IE’s LI cannot be identified in this manner; however,
we can suppose the last unidentified symbolic variable as LI
after other parts are identified.

Next, the IEIs of non-imperative IEs can be identified in
a straightforward manner as they should be compared with
predefined IEI values in the decoding routines. Thus, a symbolic
variable is identified as an IEI if it is not an LI, and there are
constraints that strictly confine its value. As shown in Figure 6,
some constraints strictly limit the value of v2 into 0x5F, 0x78,
or 0x16, which are possible values of the IEI. Therefore, v2 is
the IEI part. The value parts of IEs are identified implicitly as
they are not constrained in the decoding routines. Symbolic
variables may not even be accessed if the decoder function
does not read the actual value and only stores the address of
the value parts as an output. If the values are accessed and
copied to other memory regions, we can identify such actions
during symbolic execution and determine the value parts.

3) Handling of path explosion: In the process of symbolic
execution, BASESPEC performs state pruning to prevent path
explosion, which is a well-known problem from which symbolic
execution-based approaches suffer [12], [13]. In particular,
BASESPEC prunes a path that reached an error handling logic.
If the decoder function detects obvious errors in the message, it
invokes a complicated error handling logic. This error handling
logic is irrelevant to legitimate message decoding; however,
it causes path explosion. Therefore, we can discard this path
and prevent path explosion. As the decoder function sets a flag
variable to indicate its error, we can distinguish such paths
with the flag variable. Thus, BASESPEC prunes paths which
have set the flag variable.

In addition, we limit the number of non-imperative IEs
analyzed in each state to prevent path explosion. Recall that
non-imperative IEs can appear in an arbitrary order in a message.
Therefore, numerous combinations of their sequences appear
in symbolic execution, and this eventually produces numerous
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states having complex constraints. To prevent state explosion,
BASESPEC analyzes each non-imperative IE separately in an
independent state, as most non-imperative IEs are optional and
are not related to one another. Specifically, BASESPEC prunes
a state if it has constraints of multiple non-imperative IEs, by
periodically identifying IEIs in each active state. Note that all
the imperative IEs are analyzed in each state because they must
be present in a message.

4) Comparing IEs: For comparison, BASESPEC constructs
semantic-aware message structures based on the identified IEI
and LI values of the message. Each state from the symbolic
execution has information of all imperative IEs and some non-
imperative IEs. BASESPEC first composes the list of possible
IEs by collecting the information from various states. A pair
of an IEI and LI constructs a non-imperative IE, and an LI
without an IEI builds an imperative IE. BASESPEC analyzes
the semantics of the IEI and LI parts, and it does not identify
imperative IEs without LI as those IEs have only the value
part. For example, in Figure 6, the S1 state constructs a non-
imperative IE with v2 as the IEI (0x5F) and v3 as the LI. The S2
state comprises a non-imperative IE with v2 as the IEI (0x78)
and v3:v4 as the extended LI. Although the ATTACH REJECT
message also has an imperative IE with v1 in all states, it is not
identified because it does not have an LI but only the value part.
Then, BASESPEC constructs the message structure as the right
table in Figure 6; it concretizes the LIs to show the explicit
ranges of the lengths. The message structure is semantic-aware
as it reflects the internal logic of the decoder.

Finally, BASESPEC compares the message structure with
the specification documents similarly to that in syntactic com-
parison (§V-C). As imperative IEs must appear in a fixed order,
BASESPEC compares their LIs sequentially, skipping imperative
IEs without an LI. For non-imperative IEs, BASESPEC first
matches them using their IEIs and then compares their LIs.
BASESPEC reports any differences or remaining IE that are
not matched as semantic mismatches.

E. Implication Analysis

Although BASESPEC automatically discovers mismatches
between the specification and binary implementation, it requires
additional manual analysis to understand impacts of the mis-
matches. When a message is given, the decoder function parses
it and passes the message’s IEs to the corresponding handler
functions for further processing. BASESPEC automatically
analyzes a decoding routine by leveraging a systematic structure
of a message. However, a handler function has complicated se-
mantics (e.g., session management or call control), which makes

TABLE III: BASESPEC’s components and lines of code (LoC).

Component LoC (Python)

Preprocessing 1,303 lines
Extracting binary-embedded specifications 2,105 lines
Parsing specification documents 566 lines
Syntactic comparison 546 lines
Semantic comparison 1,938 lines
Processing Vendor2 749 lines

Total 7,207 lines

it difficult to validate its correctness automatically. Therefore,
we rely on a manual analysis to analyze it. Nevertheless, it is
worth noting that mismatches reported by BASESPEC can offer
hints for this analysis; we need to analyze only the routines
corresponding to the mismatched IEs rather than the entire
function with complex logic.

Figure 7 illustrates the relationship between mismatches in a
decoder and the implications in handler functions. In particular,
missing and unknown mismatches directly represent functional
errors in the baseband firmware. As shown in 2 of Figure 7, a
missing mismatch causes a drop of benign IE; if an imperative
IE (i.e., a mandatory field) is dropped due to the mismatch, it
shows that the firmware fails to comply with the specification
(i.e., functional errors). In addition, unknown mismatches are
tightly coupled with missing mismatches. When a developer
mistakenly embeds a wrong IEI value, both unknown and
missing mismatches appear simultaneously. In such a case, the
unknown mismatch directly represents a functional error.

Further, an invalid mismatch can have two implications;
it can cause a functional error or memory corruption as it
essentially represents that a decoder failed to validate the length
of a certain IE properly. If the decoder’s length limit for an
IE is tighter than that defined in the specification, we do not
need additional analysis because it represents a functional error
that rejects a benign IE ( 2 in Figure 7). Meanwhile, if the
length limit is larger, it may cause memory corruption bugs
in further processing ( 3 in Figure 7). For example, a buffer
overflow can happen if developer blindly assumes a certain
IE’s length according to the specification although the actual
length can be larger. As the handler function may have an
additional check, it requires manual analysis on the handler to
confirm the implications of invalid mismatches. Remarkably,
such invalid mismatches provide us helpful insights on the
developers’ mistakes in embedding message structures in the
baseband firmware, which lead us to discover several critical
security vulnerabilities (§VII-C).

VI. IMPLEMENTATION

We implemented BASESPEC in 7k lines of code (LoC) in
Python, as summarized in Table III. First, we utilized APIs
in IDA Pro v7.4 [31] for automating the manual firmware
analysis (§V-B). For the semantic analysis part of BASESPEC,
we leveraged angr, a promising binary analysis framework [58],
and we used its symbolic execution engine and constraint solver.
To analyze memory access using length indicators, which are
treated as symbolic variables (§V-D), we implemented the fully
symbolic memory based on the approach of MemSight [19].
We released our source code that is irrelevant to the vendor to
help further research.2

2https://github.com/SysSec-KAIST/BaseSpec
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TABLE IV: Summary results of syntactic/semantic comparison and implication analysis. We anonymized the model names upon the request of
the vendor; the names are assigned in an alphabetical ascending order from the latest one (i.e., Model A is the latest one). The mismatches
show that the baseband binary can be non-compliant to the specification, but their implications have to be analyzed (see §V-E).

In Binary Common Mismatch Syntactic-only Mismatch Semantic-only Mismatch Case Study Results

# of Missing Unknown Invalid Missing Unknown Invalid Missing Unknown Invalid Functional† Memory-related

Model Build Date Msgs IEs i-IE n-IE i-IE n-IE i-IE n-IE i-IE n-IE i-IE n-IE i-IE n-IE i-IE n-IE i-IE n-IE i-IE n-IE E1 E2 E3 E4 E5 E6‡E7 E8‡ E9

L
at

es
t

Fi
rm

w
ar

e Model A May/2020 268 1204 1 164 0 36 38 109 3 19 6 13 21 52 1 6 0 9 35 203 ✓ ✓ ✓ ✓ ✓ ✓ · ✓ ✓
Model B May/2020 268 1201 1 167 0 36 38 109 3 19 6 13 21 52 1 6 0 9 35 200 ✓ ✓ ✓ ✓ ✓ ✓ · ✓ ✓
Model C May/2020 268 1201 1 167 0 36 38 109 3 19 6 13 21 52 1 6 0 9 35 200 ✓ ✓ ✓ ✓ ✓ ✓ · ✓ ✓
Model D Jun/2020 268 1200 1 179 0 36 41 111 3 18 6 13 21 52 1 6 0 9 32 186 ✓ ✓ ✓ ✓ ✓ ✓ · ✓ ✓
Model E Jun/2020 268 1200 1 179 0 36 41 111 3 18 6 13 21 52 1 6 0 9 32 186 ✓ ✓ ✓ ✓ ✓ ✓ · ✓ ✓
Model F Apr/2020 268 1198 1 179 0 36 41 111 3 18 6 13 21 52 1 6 0 9 32 186 ✓ ✓ ✓ ✓ ✓ ✓ · ✓ ✓
Model G Apr/2020 268 1198 1 179 0 36 41 111 3 18 6 13 21 52 1 6 0 9 32 186 ✓ ✓ ✓ ✓ ✓ ✓ · ✓ ✓
Model H Apr/2020 263 1096 1 212 0 3 40 39 4 19 8 34 21 118 1 327 0 1 32 71 · ✓ ✓ · · · · ✓ ✓
Model I Apr/2020 263 1096 1 212 0 3 40 39 4 19 8 34 21 118 1 327 0 1 32 71 · ✓ ✓ · · · · ✓ ✓

O
ld

es
t

Fi
rm

w
ar

e Model A Apr/2019 268 1216 1 170 0 36 38 109 3 19 6 13 21 52 1 6 0 9 35 197 ✓ ✓ ✓ ✓ ✓ ✓ · ✓ ✓
Model B Feb/2019 268 1213 1 173 0 36 38 109 3 19 6 13 21 52 1 6 0 9 35 194 ✓ ✓ ✓ ✓ ✓ ✓ · ✓ ✓
Model C Feb/2019 268 1213 1 173 0 36 38 109 3 19 6 13 21 52 1 6 0 9 35 194 ✓ ✓ ✓ ✓ ✓ ✓ · ✓ ✓
Model D Mar/2018 269 1189 1 183 0 46 41 111 3 18 7 13 21 52 1 6 0 9 32 186 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Model E Mar/2018 269 1189 1 183 0 46 41 111 3 18 7 13 21 52 1 6 0 9 32 186 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Model F Apr/2017 269 1189 1 185 0 46 41 111 3 18 7 13 21 52 1 6 0 9 32 184 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Model G Apr/2017 269 1189 1 185 0 46 41 111 3 18 7 13 21 52 1 6 0 9 32 184 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Model H Apr/2016 263 1096 1 212 0 3 40 39 4 19 8 34 21 118 1 327 0 1 32 71 · ✓ ✓ · · · ✓ ✓ ✓
Model I Apr/2016 263 1096 1 212 0 3 40 39 4 19 8 34 21 118 1 327 0 1 32 71 · ✓ ✓ · · · ✓ ✓ ✓

Common Mismatch: mismatches that are discovered by both comparisons in common. {Syntactic, Semantic}-only Mismatch: mismatches from only one comparison,
i-IE: imperative IEs. n-IE: non-imperative IEs,
† Confirmed to be non-compliant to the Release 15 specification, ‡ 0-day vulnerabilities that lead to remote code execution (RCE).

VII. EVALUATION

To evaluate BASESPEC, we answer the following questions:

• How effectively can BASESPEC discover specification mis-
matches? (§VII-B)

• How effective is the approach of BASESPEC in discovering
new bugs of baseband? (§VII-C)

• How applicable is BASESPEC to inspect various firmware
versions and device models? (§VII-D)

• How applicable is BASESPEC to firmware images from other
vendors? (§VII-E)

A. Experimental Setup

Dataset. We collected firmware images from a third-party
website [62], as described in §IV-A. We downloaded the latest
and oldest firmware images from Vendor1, which is one of the
top 3 baseband chipset vendors. Note that the device models of
these firmware images are officially supported by the vendor
at the time of writing (July 1, 2020), as listed in Table IV.
We chose the latest and oldest ones because they have the
largest differences; thus, analyzing them can effectively show
the applicability of BASESPEC on diverse versions/models
(§VII-D). Further, we applied BASESPEC to another one of the
top 3 vendors, Vendor2 (§VII-E).

Specification. Among the various releases of the specification,
we chose Release 15 as its freeze point was on March 22, 2019.
Therefore, the development for this specification was finished,
and it was stable [2].3 The detailed specification versions that
we referred to are listed in Table I.

Machine. We ran all experiments on a server equipped with
Intel Core i7-6700K at 4.00 GHz, 64 GB DDR4 RAM, and 2
TB SSD, operated on a Windows 10 operating system.

B. Comparative Analysis Results

Table IV shows the mismatches identified by BASESPEC.
In summary, BASESPEC successfully discovered hundreds of

3Release 16 is just frozen at July 3rd, 2020.

mismatches in the firmware, which shows that its decoder does
not comply with the specifications. In particular, BASESPEC
extracts 277 standard L3 messages from the specification and
compares them with messages implemented in the binary (the
# of msgs column). For each message, BASESPEC checks three
types of mismatches: Missing, Unknown, and Invalid. We count
the number of mismatches separately for the imperative IEs
(i.e., i-IE) and for non-imperative IEs (i.e., n-IE) because such
IEs differentiate implications of mismatches as below.

Missing & Unknown IEs. BASESPEC found several missing
IEs, which remain as unimplemented in the firmware binaries
(Missing in Table IV). Theoretically, the baseband firmware
should implement every IE in the specification to support
complete functionalities defined in the specification. As non-
imperative IEs are literally optional, they can be ignored in
a message. However, imperative IEs must be present in a
message; otherwise, the baseband cannot properly decode
benign messages, thereby degrading the cellular service quality.

Further, BASESPEC discovered numerous unknown IEs that
are not defined in the specification (Unknown in Table IV). The
unknown IEs may be caused by incorrect implementations by
developers. For example, if a developer incorrectly enters an
IEI (i.e., IE identifier), BASESPEC will consider the originally
intended IE as missing, and the IE with the incorrect IEI as
unknown. Therefore, these mismatches can locate functional
errors that break compliance with the specification.

Invalid IEs. BASESPEC showed that hundreds of IEs are
incorrect with the specification (the Invalid column). An IE
consists of three parts: IEI, LI, and value. The decoder function
uses only IEI and LI to validate a message and propagates the
message to a message-specific handler. BASESPEC has already
identified incorrect usages of IEIs as unknown mismatches, and
it reports an IE with incorrect LI as invalid mismatches. Such
invalid IEs imply that an improper message can be delivered to
the handler function; therefore, if the handler fails to address this
message properly, it can lead to a critical memory corruption
vulnerability. For instance, the E6 bug, which will be described
in §VIII, incorrectly assumes the maximum length of an IE,
thereby resulting in buffer overflow for RCE.
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Syntactic vs Semantic mismatches. BASESPEC employs
syntactic and semantic methods for comparison, and both
methods are complementary and essential. In particular, the
syntactic comparison can find more missing/unknown IEs, while
the semantic comparison can discover more invalid IEs (see the
Syntactic-only Mismatch and Semantic-only Mismatch columns);
the unusual number of mismatches in the Model H and I
firmware will be described below. Both methods help us identify
different error cases and their explicit causes. For example,
mismatches in the syntactic comparison helped us pinpoint
developers’ mistakes regarding imperative IEs without LIs.
Recall that such imperative IEs cannot be supported by semantic
analysis (§V-D). Moreover, the numerous invalid IEs in the
semantic comparison helped us discover the abnormal handling
of IE lengths in the decoder function, which is inconsistent with
the binary-embedded structures for syntactic comparison. This
leads us to discover overflow vulnerabilities in handler functions.
Consequently, these two methods are mutually complementary.

False positives. BASESPEC shows false positive results for
two main reasons: limited support of the ARM architecture
in angr and exceptional message structures in the baseband
implementation. First, BASESPEC’s semantic analysis could
not fully process the Model H and I firmware, resulting in
an unusual number of mismatches (see their results in the
Semantic-only Mismatch column). We noticed that their binaries
contain instructions that angr’s symbolic execution engine,
which is the basis of BASESPEC’s semantic analysis (§VI),
cannot completely support. In particular, most ARM instructions
support conditional execution, which have a special suffix in
their mnemonics such as ADDEQ and CMPEQ . However, angr
currently does not support these instructions when the condition
is symbolic. Thus, it raises errors at those instructions and fails
to identify IEs correctly, resulting in missing IEs.

Second, we found that a few binary-embedded messages
have exceptional structures. For instance, according to the
specification, the CC-ESTABLISHMENT message only has the
Setup container IE except for headers. However, BASESPEC
reports multiple unknown mismatches as the message contains
suspicious IEs that are not defined in the specification. After
checking the specification, we found that the Setup container
IE is a placeholder to contain the contents of a SETUP message,
which consists of other multiple IEs. In addition, a message
called SECURITY MODE COMMAND had four unknown imperative
IEs. This message is designed to set up security parameters
for encryption and integrity checks [6]. We found that the
decoder handles this specific message exceptionally owing to
its special purpose. Even though these mismatches are incorrect,
we learned from these false positives that this message is
special and worthwhile to be analyzed manually. As it requires
more attention to implement such exceptional cases, they often
involve critical vulnerabilities (§VIII).

C. Discovering Bugs with Mismatches

By investigating mismatches identified by BASESPEC, we
successfully discovered 9 erroneous cases as shown in Ta-
ble IV, which affect 33 distinct messages. We numbered those
erroneous cases from E1 to E9. Five of them (E1–E5) are
functional errors (the Functional column) that make baseband
firmware non-compliant to the specification (e.g., rejecting a
valid message), and the other four (E6–E9) are memory-related

TABLE V: The number of missing mismatches for imperative IEs
and unknown mismatches regarding each functional error in Model A.

Common Syntactic-only Semantic-only

Missing Unknown Missing Unknown Missing Unknown

Errors i-IE i-IE n-IE i-IE i-IE n-IE i-IE i-IE n-IE

E1 1 · 21 · · · · · ·
E2 · · 2 · · · · · ·
E3 · · · 2 · · · · ·
E4 · · · · 2 13 · · 7
E5 · · · · · · · · 2

FP · · 13 1 4 · · · ·
Total 1 0 36 3 6 13 1 0 9

FP: false positives. E1–E5: functional errors

ones (the Memory-related column), which can lead to denial
of service or even remote code execution. Except for E7, all of
our cases are newly discovered (i.e., 0-days). We responsibly
disclosed all of them to the manufacturer. In the following, we
describe how BASESPEC helped us to discover these errors.

Functional errors from missing and unknown mismatches
(E1–E5). As pointed out in §V-E, BASESPEC’s mismatches
are highly related to various types of bugs in baseband firmware.
Missing imperative IEs and unknown IEs are strong indicators
for functional errors. As listed in Table V, all such mismatches
originated directly from function errors (E1–E5), except for
false positives that were mentioned previously. Accordingly, we
can identify such bugs from these mismatches. Note that one
bug can cause multiple mismatches; for example, E1, which is
the case for incorrectly ordered six IEs, causes a cascade effect
on 22 mismatches, as shown in Table V. More interestingly,
Table V summarizes the importance of employing both syntactic
and semantic comparisons; we find E3 only from syntactic
comparison and E5 only from semantic comparison owing to
their individual advantages. Although these bugs do not have
severe security implications, they may affect the service quality
by disturbing the process of benign messages. Notably, E5
affects the ATTACH ACCEPT and ROUTING AREA UPDATE message,
which are critical for network connection. Since how such
functional errors affect cellular communication depends on the
role of each communication protocol, verifying their effects is
outside the scope of this study.

Memory corruptions from invalid mismatches (E6–E7).
By checking invalid mismatches and related handlers, we
discovered two memory corruption vulnerabilities (E6–E7).
Unlike functional errors, memory corruption vulnerabilities
require more manual efforts to understand security issues in
handler functions; invalid mismatches can be harmless in terms
of security because the handlers may have additional checks.
However, invalid mismatches can help discover bugs because we
can focus on the effects of the mismatches (i.e., non-compliance
with specification) instead of analyzing every handler logic,
which is extremely complex [25], [15], [64]. For example, we
discovered E6 by focusing on one IE’s length, which can be
much larger than that in the specification; its length is 5 bytes
in the specification, but the firmware allows it up to 255 bytes.

Other memory corruptions from failures (E8–E9). By
analyzing two failure cases of BASESPEC, we discovered two
more memory corruption vulnerabilities (E8–E9). BASESPEC
produced false positives for a few messages as described
in §VII-B, and it stopped running its semantic analysis for one
message. BASESPEC analyzes a universal decoding routine
in baseband firmware to check their compliance with the
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specification. Therefore, the failure of BASESPEC for a certain
message represents that this message is handled specially with
its dedicated routine, which is error-prone. Consequently, we
further analyzed the failures and discovered two memory corrup-
tion vulnerabilities. In particular, we discovered E8, which could
be exploited for RCE, while investigating the false positives
listed in Table V; they have exceptional structures unlike other
messages. Moreover, we discovered E9 by analyzing a failure in
symbolic execution for the START DTMF ACKNOWLEDGE message.
We found that our symbolic execution engine (i.e., angr) reports
a memory access violation error for that specific message unlike
others; its report is indeed a vulnerability that dereferences an
improperly initialized pointer variable, thereby causing a crash.
Note that this vulnerability is detectable only with our efforts
to address path explosion and implement symbolic memory.

D. Applying BASESPEC to Various Firmware Images

To check the applicability and scalability of BASESPEC,
we ran BASESPEC to analyze all the collected firmware images
from Vendor1. As a result, we found that BASESPEC can
effectively identify mismatches in all tested firmware images,
as summarized in Table IV. The build dates of the latest images
are in a two-month period, whereas those of the oldest ones are
spread over four years. The average time spent on analyzing
bare-mental firmware was 3,156 s, of which 2,557 s (≈ 81%)
were spent for preprocessing (§IV-B). To analyze the detected
buggy cases for all firmware images quickly, we extended
BASESPEC’s L3 decoder identification (§IV-C) to find the
erroneous functions discovered in §VII-C. By comparing their
results, we observed the following interesting points:

When comparing the latest images with the oldest ones,
we perceived that most of the identified cases have existed
from the old days. For example, E8 and E9 are long-lived
vulnerabilities from the oldest firmware in our dataset, and they
are likely to have existed from earlier models. Moreover, some
device models have the same mismatches and vulnerabilities.
For example, Model D, E, F, and G have the same results,
while those of Model H and I are the same. In addition, Model
C and B show the same results. This result implies that the
manufacturer may share the same/similar code base for those
group of device models.

Furthermore, as the build dates of the oldest images are
spread over four years, we noticed that there have been at least
two security changes in the baseband implementation. This
is because E6 newly appeared between April 2016 and April
2017, and E7 disappeared between March 2018 and February
2018. By analyzing them, we identified that E6 appeared with
changes in GMM handlers, and E7 disappeared because of the
addition of more security checks in EMM handlers. Meanwhile,
there was no change in Model H and I in both mismatches and
error cases except for E7 in their latest versions; however, the
build date had a four-year gap. Thus, they were not affected
by E6, which is a newly introduced error.

E. Applying BASESPEC to Other Vendors

To show that BASESPEC is applicable to other vendors, we
analyzed three firmware images from Vendor2, which is another
one of the top 3 baseband chipset vendors. Currently, we only
applied the syntactic analysis part (§V-C) of BASESPEC, which
is sufficient to show its applicability to other vendors. We leave

TABLE VI: Summary results of syntactic comparison for Vendor2

Missing Unknown Invalid

Model Build Date Msgs IEs i-IE n-IE i-IE n-IE i-IE n-IE

Model X Sep/2017 87 625 0 127 8(8)∗ 0 11(2)∗ 28
Model Y Aug/2017 87 625 0 127 8(8)∗ 0 11(2)∗ 28
Model Z Oct/2016 87 604 0 148 8(8)∗ 0 17(2)∗ 33
∗ Numbers in the parenthesis are the number of false positives.

the semantic analysis as a future work because our underlying
symbolic execution engine, angr, is still insufficient to model
various library functions required to analyze the firmware
from Vendor2. Although we applied only a syntactic part of
BASESPEC for Vendor2, we discovered numerous mismatches
and even a buffer overflow bug, which was previously unknown.
Thus, we reported all the findings to the vendor.

Firmware acquisition. In the case of Vendor2, there is no third
party website that provides a well-structured list of firmware
images, unlike the case of Vendor1. Therefore, we collected
firmware images using a web search. Among them, we selected
three images based on the ARM architecture. Vendor2 adopted
the MIPS architecture instead of ARM in their recent devices
since 2017. As BASESPEC currently supports ARM only, we
used the old images. However, we found that recent MIPS
devices are not largely different from the old ones, except for
the architecture. In addition, we manually verified that the latest
firmware still has the buffer overflow that we found in the old
images. We believe that BASESPEC can apply to the recent
firmware if it supports MIPS.

Firmware analysis. We first followed similar steps that
we performed to the Vendor1’s firmware (§IV) to uncover
the obscurity of the Vendor2’s firmware. Unlike Vendor1, the
firmware image includes a file that stores debug symbols; the
file has a list of names and addresses of functions. By leveraging
this file, we could recover function symbols in the firmware.
Then, we identified a decoder function using the symbols and
other debug messages in the firmware. Similar to the firmware
of Vendor1, that of Vendor2 also implements a single decoder
function to process various L3 messages. Finally, we figured out
binary-embedded message structures from the decoder function.

We found that Vendor2’s firmware also has a machine-
friendly message structure, thereby allowing us to apply
BASESPEC successfully. However, its format is completely
different from Vendor1’s. Instead of the hierarchical lists
in Vendor1 (Figure 4), the embedded structure in Vendor2
maintains bytecode for each message, which comprises various
simple opcodes. In particular, the firmware decodes a certain
message by interpreting the corresponding bytecode. Several
opcodes exist to handle different types of IEs. For instance,
the unpack_BITS opcode parses bit-level IEs, and the unpack_-
MAXBYTES opcode parses IEs while limiting their maximum
lengths. Moreover, the bytecode also has opcodes for control
flow; for example, the IF opcode is used for checking IEI,
and the CALL opcode can reuse other opcodes. Despite the
different design of Vendor2, it still meets our key intuitions
(§III-B); we were able to apply BASESPEC to their firmware
by implementing an interpreter for syntactic comparison and
reusing other specification-related components.

Identifying mismatches. Table VI shows the number of
mismatches that the syntactic comparison of BASESPEC found
from three firmware images from Vendor2. Notably, Model X
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and Model Y showed the same result; although they are different
models, they have the same embedded message structures.
BASESPEC reported 8 unknown mismatches in all models;
however, we identified that these are false positives. Specifically,
the firmware arbitrarily divides a certain IE (e.g., Progress
Indicator IE) into multiple pieces for its parsing. BASESPEC
identified the separated pieces as different IEs and reported them
as unknown mismatches. This issue also produced two false
positives that resulted in invalid mismatches of each model. In
summary, BASESPEC correctly reported 37 invalid mismatches
from both Model X and Y, and 48 invalid mismatches from
Model Z, with 10 false positives in each model.

Discovering bugs. By checking the invalid mismatches re-
ported by BASESPEC, we found a buffer overflow vulnerability
in all three models. Notably, although the firmware images
appeared several years ago, the identified bug has been unknown
previously. We found the bug by analyzing the mismatches
from IE1 and IE2; these IEs belong to the MESSAGE1 in the CS
protocol.4 According to the specification, the IE1 can be 14
bytes long, and IE2 can be 30 bytes long. However, BASESPEC
reported that their lengths are swapped; that is, the decoder
accepts the IE1 with 30 bytes and the IE2 with 14 bytes. This
issue causes a buffer overflow in a handler function. When the
handler copies incoming IEs to its internal structure, the IE1
can overflow and overwrite a length field in the structure. Then,
this corrupted structure will be delivered to other functions via
internal messaging procedure. Therefore, in further handling,
the overwritten length field can cause other security issues, such
as denial of service. Additionally, other invalid mismatches
revealed minor mistakes, i.e., one or two-byte differences in
the lengths, which can cause functional errors.

VIII. SECURITY ANALYSIS AND CASE STUDY

This section details interesting ones from the 9 erroneous
cases (E1–E9). For the details of the other bugs, please see §A.

E1: Incorrect indices in Global IE List. By analyzing the
mismatches from BASESPEC, we discovered that the baseband
firmware is not compliant with specification because its Global
IE List has incorrect indices for several IEs in ESM messages.
As shown in Figure 4, the baseband manages IE information in
the Global IE List to reuse it for multiple messages; various
messages can share the same IEs. Each IE has a unique
index that is assigned during implementation (i.e., enum). The
firmware stores a certain IE’s information in Global IE List
according to the index, and then, the Msg IE List uses the
indices to represent IEs contained in the message.

However, a few IEs used in the ESM protocol located
incorrect indices in the Global IE List and they cause
mismatches, as shown in Table VII. For example, ESM
messages that contain Header compression configuration IE
references index of 457 for the IE. However, the actual
index of the IE is 456 in the global list; the Control plane
only indication IE is located in 457, instead of Header
compression configuration IE. It leads to missing and un-
known mismatches in BASESPEC because the intended IE
(i.e., Header compression configuration) will be missing in
the message, and the unknown one (i.e., Control plane only
indication) will appear. Developers confuse these indices due

4We redacted the names because the bug is not patched yet by the vendor.

TABLE VII: Inconsistent indices of IEs in the ESM protocol that
appear in Msg IE List and in Global IE List.

IE name Index in
Msg IE List

Index in
Global IE List

Header compression configuration 457 456
Control plane only indication 458 457
User data container 459 458
Release assistance indication 461 459
Extended protocol configuration options 456 460
Serving PLMN rate control 460 461

to the difficulties to correctly implement complex specifications
of the baseband. We found this bug because BASESPEC can
find mismatches from such inconsistency systematically.

E3: Forgotten imperative IEs in the RR protocol. Further,
we found that the Feature Indicator IE included in two RR
messages, IMMEDIATE ASSIGNMENT EXTENDED and IMMEDIATE
ASSIGNMENT REJECT, is not properly decoded in the current
baseband implementation. This is buggy because the imperative
IE is a mandatory field and should be handled. We found that
this field was only a placeholder for alignment, which is called
Spare half octet, in the old specification. However, from
v10.4.0 released in Oct. 2011, the field was changed into a
new imperative IE, named Feature Indicator. Nevertheless,
the firmware fails to reflect this change and leaves this field
without decoding. BASESPEC successfully detect this bug as
missing mismatches for imperative IEs, as listed in Table V.

E6: Stack overflow in the GMM protocol. We found that
the firmware has a stack buffer overflow in handling the GMM
protocol, which can lead to remote code execution. In particular,
the firmware accepts an LV-formatted IE called Allocated
P-TMSI for the P-TMSI reallocation command message, which
is a message in the GMM protocol. The length of this IE
is defined as a fixed size of 5 bytes in the specification.
However, we found that the firmware in fact permits a variable-
length input up to 255 bytes, from the mismatches reported
by BASESPEC. Then, we manually investigated its handler to
understand the implication of this broken compliance.

Consequently, we found that the handler is vulnerable to a
stack-based buffer overflow as shown in Figure 8. The developer
blindly assumes the IE’s length from the specification and
copies its data to a 5-byte fixed buffer; however, the size
can be larger than the one from the specification, up to 255
bytes. Notably, the get_ie_bytes function checks the lengths of
certain IEs, as shown in lines 20–24 in Figure 8. However, the
Allocated P-TMSI IE is not validated in the routine. Moreover,
this buffer is located at 52 bytes apart from the function’s return
address, and the firmware has no stack protection techniques
such as a stack canary. Therefore, attackers can hijack its
control by overwriting the return address, and they can execute
the arbitrary code using return-oriented programming [53].
We received an acknowledgement for the exploitability of this
vulnerability from the vendor. Further, we found that all models
except Model H and Model I are vulnerable. The two unaffected
models retrieve the IE in different ways, using a hard-coded
length of 5 bytes. Therefore, we can infer that this bug appeared
from the updates between Model G and Model H.

E8: Integer underflow in the EMM protocol. From the
BASESPEC’s false positives, we found that the decoder handles
the SECURITY MODE COMMAND message in the EMM protocol
exceptionally. In particular, BASESPEC reported four unknown
mismatches for the imperative IEs in the message. While
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1 // We arbitrarily named functions and variables
2 // because they are stripped in the firmware
3 void handle_ptmsi_rellocation()
4 {
5 char allocated_ptmsi[5];
6 ...
7 get_IE_bytes(allocated_ptmsi,
8 ALLOCATED_PTMSI_IDX);
9 ...

10 }
11
12 void get_ie_bytes(char *buf, enum IE_IDX idx)
13 {
14 int length;
15 char *value;
16
17 // Get a length of the IE in the message (Controllable)
18 length = get_ie_length(idx);
19
20 // Check lengths for certain IEs
21 if(idx == PLMN_LIST_IDX && length > 45)
22 length = 45;
23 if(idx == LSA_ID_IDX && length > 3)
24 length = 3;
25
26 // Get a value of the IE (Controllable)
27 value = get_ie_value(idx);
28 memcpy(buf, value, length);
29 }

Fig. 8: Code snippet of a stack buffer overflow vulnerability (E6)

investigating these results, we analyzed a caller of the decoder
function, and Figure 9 shows its code snippet. This function
specifies a body of a given message and calls the l3_decoder
function, which is the BASESPEC’s analysis target (Line 30).
Notably, this function specially handles an incoming message,
of which type is SECURITY MODE COMMAND (Lines 14–26); it
invokes the decoder function with additional fields as depicted
in Lines 5–11. We believe that the developers decided to reuse
an existing decoding routine for IEs to parse these fields (e.g.,
MAC). Therefore, they embedded these additional fields as an
IE form in the message structure, which result in unknown
mismatches. Although these mismatches are false positives, they
hint at the specialty of the SECURITY MODE COMMAND message,
which is worthwhile to analyze manually. Note that such
exceptional cases often involve misbehavior.

Interestingly, we noticed that the additional routine for the
SECURITY MODE COMMAND is vulnerable to an integer underflow
bug. This bug can cause a buffer overflow and even be exploited
for remote code execution. The function copies a part of
the message to a global buffer variable for later use, such
as MAC validation. The function copies "length - 5" bytes,
while limiting the maximum length to 38 bytes (Line 16).
However, because the length variable is defined as a short type,
"length - 5" can trigger underflow to a negative value. For
example, the value can be -1 if the length is 4, and it is passed
to the memcpy function (Line 22). Note that the memcpy function
assumes the given length as an unsigned short type; hence, it
would treat -1 as 0xffff. This makes it copy an abnormally
large data, which produces a buffer overflow. We found that
the overflowed data overwrites other variables including several
function pointers. Therefore, using this vulnerability, an attacker
can execute arbitrary code by overwriting the function pointers.
We also received acknowledgement for the exploitability of this
vulnerability from the vendor. We found that all the models
are affected by this vulnerability regardless of the build date.

IX. DISCUSSION

Automating bug discovery. Although BASESPEC automat-
ically identifies mismatches that are non-compliant with the
specification, it requires additional efforts to discover bugs: one
needs to analyze a few message handlers affected by the mis-
matches. This is because BASESPEC aims to pinpoint erroneous
points by comparing baseband implementation based on cellular

1 // We arbitrarily named functions and variables
2 // because they are stripped in the firmware
3 void preprocess_emm(L3Msg *msg, short length)
4 {
5 // Figure out l3_body from msg
6 // e.g., msg->payload =
7 // [Header(1 byte)][MAC(4)][SEQ(1)][L3 Header(2)][L3 Body(n)]
8 // -> SECURITY_MODE_COMMAND:
9 // l3_body = [MAC][SEQ][L3 Header][L3 Body]

10 // -> Others:
11 // l3_body = [L3 Body]
12 char *l3_body;
13 if (msg->type == SECURITY_MODE_COMMAND) {
14 // length - 5 can be underflown (integer underflow)
15 if (length - 5 > 38)
16 memcpy(global_buf, msg->payload + 5 , 38);
17 else {
18 // memcpy triggers buffer overflow
19 // (e.g., if length == 4, length - 5 = 0xffff)
20 memcpy(global_buf, msg->payload + 5,
21 (unsigned short) length - 5);
22 }
23 l3_body = msg->payload + 1;
24 }
25 else
26 l3_body = msg->payload + 8;
27 l3_decoder(l3_body);
28 ...
29 }

Fig. 9: Code snippet of a integer underflow bugs (E8)

specifications (§V). Meanwhile, BASESPEC can collaborate
with other promising techniques for full automation. From the
analysis points identified by BASESPEC, fuzzing strategies [16],
[52], [70] or hybrid analysis approaches [59], [68] can be
applied. Further, recent emulation-based approaches [42], [27],
[71] can co-operate with BASESPEC as well. We leave such
promising improvements as a future work.

Applicability of our approach. BASESPEC addresses and
leverages two natural characteristics of the baseband modem.
First, as a real-time embedded system, a baseband initializes its
memory layout in the booting procedure and has many interrupt
routines that indirectly call functions; this severely hinders
identifying the basic structures of the firmware. BASESPEC
addressed this challenge with two preprocessing techniques
(§IV-B). Second, as a network system, a baseband has a
message decoder that utilizes embedded message structures
to parse incoming messages. BASESPEC leverages this prop-
erty and extracts binary-embedded message structures for a
comparative analysis based on specifications (§IV-D). As other
baseband modems would share these properties, we believe that
BASESPEC’s approach can be applicable although it requires
considerable manual efforts for analyzing the firmware once.

In addition, BASESPEC currently supports standard L3
messages, but other cellular protocols can be analyzed similarly.
This is because by design, the protocol specifications should
describe every message structure for cellular protocols in
consistent forms [3]. These systematic forms allow BASESPEC
to automatically analyze these messages. Therefore, we believe
BASESPEC can be applied to other protocols that have well-
structured messages defined in ASN.1 or CSN.1, such as the
messages for the radio resource control protocol.

Towards other types of bugs. Firmware analysis for baseband
inherits the fundamental challenges of binary analysis. For
example, discovering service-related bugs such as bypassing
security channels [39] is extremely difficult. This is because
a baseband implements numerous cellular protocols that have
convoluted states; therefore, various stateful information should
be considered in the analysis. Moreover, building a reference
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for logical bugs from the specifications is also not trivial [34],
[35], [10], [33], [8]. Therefore, we invite future research in this
field by introducing BASESPEC as an entry point. Although
BASESPEC currently cannot cover logical bugs, its ultimate
goal is to build such a model and discover logical bugs with a
comparative analysis.

X. RELATED WORK

A. Studies on cellular baseband software

A baseband processor in cellular devices plays an important
role in cellular communication. Thus, researchers have studied
the security of protocol implementations in a BP [47], [46], [63],
[64], [25], [15], [42]. Early stage of these approaches focused on
GSM networks, especially SMS or cell broadcast messages [47],
[46], [63]. Without directly analyzing the firmware of baseband,
these approaches implemented a fuzzer based on the SMS
message structure, and they found several memory-related bugs
that force the device to crash or behave abnormally.

Other studies [64], [25], [15] focused on analyzing baseband
firmware for layer 3 protocols. Weinmann [64] showed a
practical approach to analyze memory-related bugs in GSM
protocol stacks in baseband. Golde et al. [25] and Cama [15]
analyzed recent Exynos firmware utilizing memory dumps.
Notably, they discovered RCE 0-days and were rewarded at
Mobile Pwn2Own. Although these approaches yield promising
insights into baseband analysis, they have a limitation in that
they require the repetitive manual analysis. To address this
limitation, Maier et al. [42] recently proposed an emulation-
based analysis on the RRC/EMM protocols. To emulate
functions related to those protocols, they manually analyzed
MediaTek firmware and hooked all related functions. Then, they
ran a famous fuzzer, AFL++ [43], and found a heap overflow.

However, these studies also suffer from two fundamental
limitations as described in §III-A: 1) it is difficult to create an
oracle for identifying a bug, and 2) they are not applicable to di-
verse models/versions. BASESPEC overcomes these limitations
by leveraging a comparative analysis based on specifications
(§III-B). With a prototype of BASESPEC, we discovered many
erroneous cases including 2 0-days for RCE (§VII). Moreover,
BASESPEC is applicable to diverse models/versions (§VII-D).

Meanwhile, other studies focused on the AT interface of the
baseband [29], [44], [60], [37], [45]. Notably, Tian et al. [60]
conducted a comprehensive analysis on over 2,000 Android
devices across 11 vendors using firmware images and found
multiple bugs. Lastly, various studies provide useful insights for
reverse-engineering the baseband [65], [21], [28], [11], [69].

B. Studies on cellular network protocols

Numerous approaches rely on dynamic analysis for inspect-
ing over-the-air bugs on cellular networks, utilizing open-source
cellular stacks [26], [14], [48], [66] and low-cost software-
defined radios (SDRs) [22], [49]. These approaches do not
need to directly analyze baseband firmware; instead they need
a custom test-bed. By sending crafted messages to target
devices, they discovered several service-related bugs in the L3
protocols that affect service quality [51], [41] or leak private
information [56], [57]. Recent approaches [61], [54], [23], [39]
have attempted to minimize the manual efforts involved in
the dynamic analysis, leveraging abnormal messages. Some

other studies focused on different layers, protocols, or domains
on cellular networks such as VoLTE [38], SS7/Diameter [32],
uplink messages [39], [18], or lower layers [55], [40], [67].

These approaches are advantageous for finding service-
related bugs on specifications instead of software bugs such as
memory corruption. Nevertheless, they require real hardware
and considerable domain knowledge for cellular networks and
specifications. Therefore, testing every implemented messages
on diverse devices or building a bug oracle requires huge efforts.
BASESPEC tackles this by directly matching the documented
specification with the binary-embedded one, thereby discovering
hundreds of mismatches that may break the compliance with
the specification on multiple devices (§VII-C). Currently,
BASESPEC cannot discover bugs identified by these studies;
however, its methodology can be extended as discussed in §IX.

XI. CONCLUSION

In this study, we conducted the first systematic comparative
analysis of cellular baseband software and specifications.
By leveraging the natural characteristics of the baseband
as a real-time embedded device and a network modem,
we designed BASESPEC that automatically extracts binary-
embedded specification and compares it with the documented
one syntactically and semantically. By running an automated
prototype of BASESPEC on 18 baseband firmware images
from one of the top three vendors, we discovered hundreds
of mismatches that are non-compliant with the specification.
By analyzing the mismatches, we discovered a total of 9 bugs,
of which 5 are functional errors and 4 are memory-related
vulnerabilities including two critical RCE 0-days. Further, we
applied BASESPEC to another vendor and discovered several
mismatches, two of which cause a buffer overflow bug.
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APPENDIX A
CASE STUDIES ON OTHER MIS-IMPLEMENTATIONS

E2: Redundant IEs in the SS protocol. We found that
several messages in the SS protocol have redundant IEs, thereby
resulting in unknown mismatches. We believe that it happens
because of blind copy-and-paste; a developer seems to copy the
structure of the RELEASE COMPLETE message in the CS protocol
to implement the REGISTER and RELEASE COMPLETE messages in
the SS protocol. They are almost same; however, the RELEASE
COMPLETE message in the CS protocol has an additional IE called
User-user, which is unspecified in the other two messages.
Such a redundant IE makes the firmware non-compliant with the
specification. In addition, it can cause unintentional behaviors
in the firmware because its handler can receive unexpected
messages. We found this mistake in all models in our dataset.

E4: Incorrect IEI value in the EMM protocol. We also
discovered that the NAS message container IE of the Control
plane service request message in the EMM protocol has an
incorrect IEI, thereby resulting in both missing and unknown
mismatches. Because there is only one missing mismatch and
one unknown mismatch with the same length, we can determine
that the incorrect IEI value is the root cause of those mismatches.
The IE should have 0x67 as its IEI, but 0xff is stored in the
firmware. In fact, the NAS message container IE is used in
other messages as imperative IEs, which do not require an IEI
value. However, when the Control plane service request
message is added in the specification of version v13.6.1, which
is released in August 2016, the IE is first used as a non-
imperative IE with the IEI of 0x67 in the message. Therefore,
this mismatch implies that developers missed changing the IEI
when adding this new message. Since Model H and Model I
do not have the message, they are not affected by this mistake.

E5: Unknown IE in the GMM protocol. We discovered that
the Routing area update accept and Attach accept mes-
sages in the GMM protocol share one unknown non-imperative
IE, whose IEI is 0xB and length is 2 bytes. These messages
have many unimplemented yet non-imperative IEs. We believe
that this buggy IE is one of them with a misconfigured IEI.
This error affects all models except Model H and Model I.

E7: Buffer overflow in the EMM protocol. Similar to E6, the
handler function for the EMM information message in the EMM
protocol mishandled the Network daylight saving time IE.
In the 6 oldest firmware images in our dataset, the handler
copies this IE into a global buffer without checking its length.
This buffer overflow can corrupt nearby configuration variables
and cause unintended behaviors. We found that recent firmware
contains a routine to limit its length to 7 bytes at maximum.

E9: Invalid pointer dereference in the CS protocol. We
found invalid pointer dereference while analyzing START DTMF
ACKNOWLEDGE message in the CS protocol. To decode this
message, the L3 decoder function first initializes a pointer
with -1 and later sets it to other data. If the message has
invalid IEs, this pointer can hold the initial value (i.e., -1) until
dereferencing. Therefore, the decoder should check whether the
pointer has a valid address before dereferencing. Unfortunately,
it fails to check the pointer properly, and it compares the pointer
with NULL instead of -1. Therefore, the firmware accesses
memory at -1, which results in access violation. This bug
is discovered in all models (i.e., from Model A to Model I).
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