
HardsHeap: A Universal and
Extensible Framework for

Evaluating Secure Allocators

Insu Yun, Woosun Song, Seunggi Min(KAIST),

Taesoo Kim (Georgia Institute of Technology)

Heap vulnerabilities are serious

From “Pursuing Durably Safe Systems Software”, Matt Miller, SSTIC 2020

Many secure allocators are proposed

Secure allocators support many security
properties
• Prevent adjacent chunks

• e.g., randomization

• Detect buffer overflow
• e.g., heap canary

• Prohibit reusing memory
• e.g., randomization

• Stop heap spray
• e.g., randomization

• Prevent information leakage
• e.g., separated heap metadata

The security properties
are claimed individually

but attested with
limited test cases

Problem 1: Hard to compare them with each other

Does it support all
security properties?

Can we quantify this?

Problem 1: Hard to compare them with each other

Does it secure in every case?
large allocation,

negative allocation,
even more …

Example: Double free in DieHarder
void* p0 = malloc(80KB);
free(p0);

void* tmp = malloc(100KB);

free(p0); // free 'p0' again

void* p2 = malloc(80KB);

free(tmp);

void* p3 = malloc(80KB);

assert(p2 == p3);

Double free a large chunk

Overlapping chunks
(Because DieHarder has

no protection on large chunks)

Recall: ArcHeap (Usenix Security ‘20)

malloc(sz)
Allocation

free(p)
Deallocationp[ioverflow]=v

Overflow free(pfreed)

Double free

Heap action generation

Chunk 1

Chunk 2

Overlap with others

Outside of heap

Corruption in non-heap memory

Abnormality detection

void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);
// [BUG] free 'p0' again
free(p0);
void* p2 = malloc(lsz);
free(p1);
assert(p2 == malloc(lsz));

Proof-of-concept generation

Problem 3: ArcHeap cannot evaluate sec
ure properties

malloc(sz)
Allocation

free(p)
Deallocationp[ioverflow]=v

Overflow free(pfreed)

Double free

Heap action generation

Chunk 1

Chunk 2

Overlap with others

Outside of heap

Corruption in non-heap memory

Abnormality detection

void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);
// [BUG] free 'p0' again
free(p0);
void* p2 = malloc(lsz);
free(p1);
assert(p2 == malloc(lsz));

Proof-of-concept generation

Inflexible

Local
(i.e., a single instance)

Deterministic

Recall: secure allocators support many
security properties
• Prevent adjacent chunks

• e.g., randomization

• Detect buffer overflow
• e.g., heap canary

• Prohibit reusing memory
• e.g., randomization

• Stop heap spray
• e.g., randomization

• Prevent information leakage
• e.g., separated heap metadata

HardsHeap: A Universal and Extensible
Framework for Evaluating Secure Allocators

malloc(sz)
Allocation

free(p)
Deallocationp[ioverflow]=v

Overflow free(pfreed)

Double free

Heap action generation

void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);
// [BUG] free 'p0' again
free(p0);
void* p2 = malloc(lsz);
free(p1);
assert(p2 == malloc(lsz));

Proof-of-concept generation

Install hooks

Extensible
analysis

Chunk 1

Chunk 2

Outside of heap

Local abnormality detection

Freed chunk 1

Chunk 1 Chunk 2

Adjacent allocation

…

Reclaim

Chunk 2

Freed chunk 1

Sampling-based
Testing

X %
Success ratioStatistical

Significance Delta
Debugging

Examples: adjacent chunks

• Goal: Check whether the secure allocator can avoid adjacent
chunks

• Analysis:
• Local: Check whether adjacent chunks happen by hooking allocations
• Global: Calculate the probability of adjacent chunks

• PoC: Programs with a high chance to get adjacent chunks
(e.g., > 25%)

Examples: heap spray

• Goal: Check whether the allocator is resilient from heap spray
attacks

• Analysis:
• Local: Record chunks’ start and size by hooking allocations
• Global: Calculate the highest probability of the common address

among multiple executions

• PoC: Programs with a high chance to get the common address

HardsHeap is extensible to cover
various security properties

• Usable: ~100 lines of code
• Extensible: Various security properties

Modules LoC Description

Adjacent 135 Check if chunks can be adjacent

Reclaim 119 Check if a dangling chunk is reclaimable

CheckOnFree 89 Check if an allocator can detect a corrupted chunk at free

Uninitialized 78 Check if we get metadata of allocators

Heap spray 64 Check if we can guess a fixed address for every execution

SizeCheck 61 Check if a chunk can be smaller than its request

ArcHeap 574 Other heap vulnerabilities

Due to randomized mechanisms, some
test cases are non-deterministic

void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);
// [BUG] free 'p0' again
free(p0);
void* p2 = malloc(lsz);
free(p1);
assert(p2 == malloc(lsz));

Success
(i.e., abnormal

behavior)

Failure

Success

…

Is this action
redundant?

Recall: Delta Debugging

void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);
// [BUG] free 'p0' again
free(p0);
void* p2 = malloc(lsz);
free(p1);
assert(p2 == malloc(lsz));

Failure

Success

This action is
redundant!

No, this action is
not redundant!

HardsHeap addresses this issue by using
Statistical Significance Delta Debugging (SSDD)
void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);
// [BUG] free 'p0' again
free(p0);
void* p2 = malloc(lsz);
free(p1);
assert(p2 == malloc(lsz));

void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);
// [BUG] free 'p0' again
free(p0);
void* p2 = malloc(lsz);
free(p1);
assert(p2 == malloc(lsz));

X1 %
Success ratio

X2 %
Success ratio

X3 %
Success ratio

Y1 %
Success ratio

Y2 %
Success ratio

Y3 %
Success ratio

This action is redundant if
1) Y is not significantly worse
or 2) Y is significantly better
than X

Evaluation on real-world secure allocators

• Apply to 10 open-source secure allocators
• 6 from academic works

• DieHarder (CCS ’10), FreeGuard (CCS ’17),
• Guarder (Security ’18), SlimGuard (Middleware ’19),
• MarkUS (Oakland ’20), ffmalloc (Security ’21)

• 4 from non-academic works
• scudo (Android)
• mimalloc (Microsoft)
• hardened_malloc (GrapheneOS)
• isoalloc (partially inspired by Chrome's PartitionAlloc)

Bugs found by HardsHeap

• 10 bugs are discovered, 5 are fixed

Example: adjacent objects in Guarder/FreeGuard

• Claim: malloc() return random chunks
void* p0 = malloc(…);
void* p1 = malloc(…);
void* p2 = malloc(…);
void* p3 = malloc(…);
…

Two malloc 100% return
adjacent objects in a

short time period

use time() as random source:
• seconds since 1/1/1970
• the same within 1 second

https://github.com/UTSASRG/FreeGuard/blob/bfdf6d9a5b25c3f8f974c6a2ac7bb286e5c2b296/libfreeguard.cpp#L170

Example: reclaim objects in MarkUs (1/2, Fixed)

• Claim: Do not reallocate an object if any reference exists

void* p0 = malloc(-1);
void* p1 = malloc(0x80000);
free(p1);

void* p2 = malloc(0x40000);
assert(p1 <= p2 && p2 < p1 + 0x80000);

Reallocate the object
even if

p2 points to it

After the very large malloc
fails (e.g., -1), MarkUs switc
hes to unsafe reallocation

https://github.com/SamAinsworth/MarkUs-sp2020/blob/b73ee0cefd3bf89a7be11efa14ac339ddd87c7b2/bdwgc-markus/os_dep.c#L2273

Example: heap spray in mimalloc (Fixed)

• Claim: heap address is randomized within 64-bit address space

void* p0 = malloc(4TB);
// p0 is always like 0x7FFFFFFFxxx for any runs

Low entropy

mimalloc uses MAP_NORESERVE to overcommit
memory, which is harmful for randomization

Fix: return NULL for large allocation > 1GB

https://github.com/microsoft/mimalloc/commit/9317256a4f3c76d4ce70741a357e5aadcda58529

HardsHeap also shows limitations of
secure allocators (e.g., Large allocation)
• Known: DieHarder’s entropy is inversely proportional to size

• HardsHeap found reliable adjacent chunks on very large allocation

• Unknown: Scudo’s entropy is similar to DieHarder’s

• Unknown: Guarder’s entropy becomes zero if we allocate
very large chunks (> 512KB)

HardsHeap can discover these behaviors
automatically!

SSDD is better than other minimization mechanisms

• Classic: Classical Delta Debugging

• Greedy: Only consider average probability without statistical significance

13.8% smaller
than Greedy

48.7% higher
reproducibility
than Classic

Limitations & Discussion

• Limitations
• Incompleteness
• Lack of reasoning
• Only Linux support

Q: HardsHeap results imply that secure
allocators are useless?

A: No! They are not silver bullet but are very
useful (See our paper). Please use them!

Conclusion

• HardsHeap: Automatic ways to evaluate secure allocators
• Extensible framework
• Sampling-based testing
• Statistical Significance Delta Debugging (Please see our paper)

• 10 implementation bugs and many limitations of various
secure allocators

• Open source: https://github.com/kaist-hacking/HardsHeap

Thank you

	HardsHeap: A Universal and Extensible Framework for Evaluating Secure Allocators
	Heap vulnerabilities are serious
	Many secure allocators are proposed
	Secure allocators support many security properties
	Problem 1: Hard to compare them with each other
	Problem 1: Hard to compare them with each other
	Example: Double free in DieHarder
	Recall: ArcHeap (Usenix Security ‘20)
	Problem 3: ArcHeap cannot evaluate secure properties
	Recall: secure allocators support many security properties
	HardsHeap: A Universal and Extensible Framework for Evaluating Secure Allocators
	Examples: adjacent chunks
	Examples: heap spray
	HardsHeap is extensible to cover various security properties
	Due to randomized mechanisms, some test cases are non-deterministic
	Recall: Delta Debugging
	HardsHeap addresses this issue by using Statistical Significance Delta Debugging (SSDD)
	Evaluation on real-world secure allocators
	Bugs found by HardsHeap
	Example: adjacent objects in Guarder/FreeGuard
	Example: reclaim objects in MarkUs (1/2, Fixed)
	Example: heap spray in mimalloc (Fixed)
	HardsHeap also shows limitations of secure allocators (e.g., Large allocation)
	SSDD is better than other minimization mechanisms
	Limitations & Discussion
	Conclusion
	Thank you

