HardsHeap: A Universal and
Extensible Framework for
Evaluating Secure Allocators

Insu Yun, Woosun Song, Seunggi Min(KAIST),
Taesoo Kim (Georgia Institute of Technology)

Heap vulnerabilities are serious

Top vulnerability class
systems software[1] at Microsoft
(2016 through 2019)

#1— heap out-of-bounds

% of CWEs

#2 — use after free

#3 — type confusion

#4 — uninitialized use

Heap OOE Read m Other

Urinitiahzed Use

From “Pursuing Durably Safe Systems Software”, Matt Miller, SSTIC 2020

Many secure allocators are proposed

DieHarder: Securing the Heap®

Gene Novark Emery D. Berger
Dept. of Computer Science Dept. of Computer Science
University of Massachusetts Amherst University of Massachusetts Amherst
gnovark @cs.umass.edu emery @cs.umass.edu

FreeGuard: A Faster Secure Heap Allocator

Sam Silvestro Hongyu Liu Corey Crosser
University of Texas at San Antonio University of Texas at San Antonio United States Military Academy
Sam.Silvestro@utsacdu livhyscef@gmail.com Corey.Crosser@usma.edu

Zhigiang Lin Tongping Liu

University of Texas at Dallas University of Texas at San Antonio
zhigiang lin@utdallas.edu Tongping Lin@utsa.edu

Preventing Use-After-Free Attacks with Fast Forward Allocation

Brian Wickman’ Hong Hu* Insu Yun Daehee Jang

JungWon Lim Sanidhya Kashyap® Taesoo Kim

TGTRI *PennState GeorgiaTech *EPFL

2LILVM
COMPILER
' INFRASTRUCTURE

| » »

Scudo Hardened Allocator

mimalloc

| microsoft / mimalloc

T;I GrapheneOS

H GrapheneQS [hardened_malloc

Secure allocators support many security
properties
* Prevent adjacent chunks / \

* e.g., randomization , .
» Detect buffer overflow The SeFU"'ty.P"QPGFt'eS
* e.g., heap canary are claimed |nd|V|duaIIy
* Prohibit reusing memory but attested with
* e.g., randomization limited test cases
» Stop heap spray
* e.g., randomization \ /

* Prevent information leakage
* e.g. separated heap metadata

Problem 1. Hard to compare them with each other

Does it support all
security properties?

Problem 1. Hard to compare them with each other

Does It secure In every case?
large allocation,

negative allocation,
even more ...

Provomting | so AMer Frow Attachs with § ot Forward A Box atiun

- O o & s g The e Y oow e ey
w.- - AYEN R P ‘eme -

P - e

Example: Double free in DieHarder

void* p0 = malloc (80KB) ;
free (p0);
Double free a large chunk
volid* tmp = malloc (100KB) ; =
Overlapping chunks
(Because DieHarder has

void* p2 = malloc (80KB) ; no protection on large chunks)

free(p0); // free 'p0' again

free (tmp) ;
void* p3 = malloc (80KB) ;

assert (p2 == p3);

Recall: ArcHeap (Usenix Security 20)

malloc(sz)

Allocation

Chunk 2

Overlap with others

Outside of heap

Corruption in non-heap memory

free(p)

. _ Deallocation
p [lover‘-Flow] =V

Overflow

free (pfreed)

Double free

Abnormality detection

Heap action generation

void* pO0 = malloc(lsz);
free (p0);

void* pl = malloc(xlsz);
// [BUG] free 'p0O' again
free (p0);

void* p2 = malloc(lsz);
free(pl);

assert (p2 == malloc(lsz));

Proof-of-concept generation

Problem 3: Arclk avaluate sec

ure properties Inflexible

L ocal

(.e., a single instance)

Recall: secure allocators support many
security properties

* Prevent adjacent chunks
e Detect buffer overflow

 e.g., heap canary
* Prohibit reusing memory

» Stop heap spra
* Prevent information leakage

* e.g. separated heap metadata

HardsHeap: A Universal and ExteSasiEnraa.
Framework for Evaluating Secure

~N

(] "
naTloc(s?) Extensiole
Allocation a n a |yS | S L Adjacent allocation)
(Rl

_ Reclaim)

I
p [1over‘-Flow] =V
]

Overflow

Deallocation

fr‘ee(pmid)

Double free

Heap action generation Local abnormality detection

void* p0 = malloc(lsz);
free (p0);

void* pl = malloc(xlsz);

// [BUG] free 'p0' again X %

. 5 free (p0) ; _
Statlstlcal void* p2 = malloc(lsz); Success ratio
free(pl);

assert (p2 == malloc(lsz));

Significance Delta
Debugging

Proof-of-concept generation

Examples: adjacent chunks

« Goal: Check whether the secure allocator can avoid adjacent
chunks

 Analysis:
 Local: Check whether adjacent chunks happen by hooking allocations
 Global: Calculate the probability of adjacent chunks

« PoC: Programs with a high chance to get adjacent chunks
(e.g., > 25%)

Examples: heap spray

» Goal: Check whether the allocator is resilient from heap spray
attacks

 Analysis:
* Local: Record chunks’ start and size by hooking allocations

 Global: Calculate the highest probability of the common address
among multiple executions

* PoC: Programs with a high chance to get the common address

HardsHeap Is extensible to cover
various security properties

Modules LoC
Adjacent 135
Reclaim 119
CheckOnFree 89
Uninitialized 78
Heap spray 04
SizeCheck 61
ArcHeap 574

Description

Check if chunks can be adjacent

Check if a dangling chunk is reclaimable

Check if an allocator can detect a corrupted chunk at free
Check if we get metadata of allocators

Check if we can guess a fixed address for every execution
Check if a chunk can be smaller than its request

Other heap vulnerabilities

« Usable: ~100 lines of code
 Extensible: Various security properties

Due to randomized mechanisms, some
test cases are non-deterministic

Is this action

redundant?
=

Success

void* p0 = malloc(lsz); — (i.e., abnormal
—free{pts behavior)
vold* pl = malloc(xlsz);

// [BUG] free 'p0O' again
free (p0);

vold* p2 = malloc(lsz);
free (pl) ; Success
assert (p2 == malloc(lsz));

Failure

Recall: Delta Debugging

This action is

redundant!
volid* pO0 = malloc(lsz); Success =
et
volid* pl = malloc(xlsz);
// [BUG] free 'p0' again Failure
free (p0) ; —
vold* p2 = malloc(lsz);
free(pl); No, this action is
Rosert(pz == malioc(isz)); not redundant!

HardsHeap addresses this issue by using
Statistical Significance Delta Debugging (SSDD)

vold* pO0 = malloc(lsz); X, %
free (pO) ; Success ratio
void* pl = malloc(xlsz); . o

r r ; 2 /0 . : . .
géee[fggf_ffee p0’ again —» sweswio | [OIS action is redundant if
void* p2 — malloc(lsz); x, s | 1) Y is not significantly worse
free (pl) ; seessrato | or 2) 'Y is significantly better
assert (p2 == malloc(lsz)); thar1)(
void* p0 = malloc (lsz); o ;;;;Efi///////’
—&e&(—p’&) , Sucheis r:tio
void* pl = malloc(xlsz);
// [BUG] free 'p0O' again — Y, %
free (po) : Success ratio
void* pZ2 = malloc(lsz);

Y, %

free (pl) ’ Succeis ratio
assert (p2 == malloc(lsz));

Evaluation on real-world secure allocators

« Apply to 10 open-source secure allocators
« 6 from academic works

e DieHarder (CCS '10), FreeGuard (CCS "17),
« Guarder (Security '18), SlimGuard (Middleware '19),
« MarkUS (Oakland '20), ffmalloc (Security '21)

« 4 from non-academic works
e scudo (Android)
 mimalloc (Microsoft)
» hardened_malloc (GrapheneOS)
* isoalloc (partially inspired by Chrome's PartitionAlloc)

Bugs found by HardsHeap

« 10 bugs are discovered, 5 are fixed

Allocator Module Description Status
Guarder . : R
Adjacent Insufficient randomness due to predictable seeds

FreeGuard R

, Unsafe reclamation in mmapped memory P
MarkUs Reclaim . . .

Unsafe reclamation due to failed allocation P

mimalloc Spray Heap spray is possible due to memory overcommit P
Guarder A
FreeGuard _ . : A
_ SizeCheck Integer overflow in memory allocation
isoalloc P
ffmalloc P
SlimGuard ArcHeap Insufficient check for invalid free R

R: Reported, A: Acknowledged, P: Patched

Example: adjacent objects in Guarder/FreeGuard

« Claim: malloc() return random chunks

volid* pO0 = malloc(..);
void* pl = malloc(..);
void* p2 = malloc(.); use time() as random source:
void* p3 = malloc(..);

e seconds since 1/1/1970
e the same within 1 second

Two malloc 100% return

adjacent objects In a
short time period

https://github.com/UTSASRG/FreeGuard/blob/bfdf6d9a5b25c3f8f974c6a2ac7bb286e5c2b296/libfreeguard.cpp#L170

Example: reclaim objects in MarkUs (1/2, Fixed)

* Claim: Do not reallocate an object if any reference exists

void* p0 = malloc (-1);

void* pl = malloc (0x80000) ;

free(pl);

volid* p2 = malloc (0x40000);

assert (pl <= p2 && p2 < pl + 0x80000) ;

EEefE R Neloilad After the very large malloc
even if fails (e.g., -1), MarkUs switc
p2 points to It hes to unsafe reallocation

https://github.com/SamAinsworth/MarkUs-sp2020/blob/b73ee0cefd3bf89a7be11efa14ac339ddd87c7b2/bdwgc-markus/os_dep.c#L2273

Example: heap spray in mimalloc (Fixed)

 Claim: heap address is randomized within 64-bit address space

volid* pO = malloc (4TB); LOW entropy

// p0 is always like 0x7FFFFFFFxxx for any runs

mimalloc uses MAP_NORESERVE to overcommit
memory, which is harmful for randomization

Fix: return NULL for large allocation > 1GB

https://github.com/microsoft/mimalloc/commit/9317256a4f3c76d4ce70741a357e5aadcda58529

HardsHeap also shows limitations of
secure allocators (e.g., Large allocation)

« Known: DieHarder’s entropy Is inversely proportional to size
« HardsHeap found reliable adjacent chunks on very large allocation

* Unknown: Scudo’s entropy is similar to DieHarder'’s

« Unknown: Guarder’s entropy becomes zero if we allocate
very large chunks (> 512KB)

HardsHeap can discover these behaviors
automatically!

SSDD is better than other minimization mechanisms

» Classic: Classical Delta Debugging
« Greedy: Only consider average probability without statistical significance

(a) Test case reduction ratio (higher is better)

B 100 1 Il Classical [Greedy [SSDD

75

48.7% higher

50

25 1

ducibilit
DI FR SL HA MI C DI FR SL HA MiI DI SL MI DI MiI MI DI FR SL *
AD AD AD AD AR D ADC ADC ADC ADS ADS AR AR AR CH CH ME RE RE RE a n a S S I C

Allocator & Module

0_

(b) Probability change ratio (higher is better)

(%)

13.8% smaller

than Greedy I'I--—rl—rrr ﬂrrrr rrll

R SL HA MI DI SL MI FR SL HA MI FR FR FF
DC ADC ADS ADS AR AR AR CH CH ME RE RE RE RE RE RES Sl SP SP SP

Allocator & Module

Limitations & Discussion

e Limitations
* Incompleteness
* Lack of reasoning
* Only Linux support

/Q: HardsHeap results imply that secure A

allocators are useless?

A: No! They are not silver bullet but are very
Kuseful (See our paper). Please use them!)

Conclusion

« HardsHeap: Automatic ways to evaluate secure allocators
* Extensible framework
« Sampling-based testing
« Statistical Significance Delta Debugging (Please see our paper)

* 10 implementation bugs and many limitations of various
secure allocators

« Open source: https://github.com/kaist-hacking/HardsHeap

Thank you

	HardsHeap: A Universal and Extensible Framework for Evaluating Secure Allocators
	Heap vulnerabilities are serious
	Many secure allocators are proposed
	Secure allocators support many security properties
	Problem 1: Hard to compare them with each other
	Problem 1: Hard to compare them with each other
	Example: Double free in DieHarder
	Recall: ArcHeap (Usenix Security ‘20)
	Problem 3: ArcHeap cannot evaluate secure properties
	Recall: secure allocators support many security properties
	HardsHeap: A Universal and Extensible Framework for Evaluating Secure Allocators
	Examples: adjacent chunks
	Examples: heap spray
	HardsHeap is extensible to cover various security properties
	Due to randomized mechanisms, some test cases are non-deterministic
	Recall: Delta Debugging
	HardsHeap addresses this issue by using Statistical Significance Delta Debugging (SSDD)
	Evaluation on real-world secure allocators
	Bugs found by HardsHeap
	Example: adjacent objects in Guarder/FreeGuard
	Example: reclaim objects in MarkUs (1/2, Fixed)
	Example: heap spray in mimalloc (Fixed)
	HardsHeap also shows limitations of secure allocators (e.g., Large allocation)
	SSDD is better than other minimization mechanisms
	Limitations & Discussion
	Conclusion
	Thank you

