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Heap vulnerabilities are serious

From “Pursuing Durably Safe Systems Software”,  Matt Miller, SSTIC 2020



Many secure allocators are proposed



Secure allocators support many security 
properties
• Prevent adjacent chunks

• e.g.,  randomization

• Detect buffer overflow
• e.g., heap canary

• Prohibit reusing memory
• e.g., randomization

• Stop heap spray
• e.g., randomization

• Prevent information leakage
• e.g., separated heap metadata

The security properties 
are claimed individually 

but attested with 
limited test cases



Problem 1: Hard to compare them with each other

Does it support all
security properties?

Can we quantify this?



Problem 1: Hard to compare them with each other

Does it secure in every case?
large allocation,

negative allocation, 
even more …



Example: Double free in DieHarder
void* p0 = malloc(80KB);
free(p0);

void* tmp = malloc(100KB);

free(p0); // free 'p0' again

void* p2 = malloc(80KB);

free(tmp);

void* p3 = malloc(80KB);

assert(p2 == p3);

Double free a large chunk 


Overlapping  chunks 
(Because DieHarder has 

no protection on large chunks)



Recall: ArcHeap (Usenix Security ‘20)

malloc(sz)
Allocation

free(p)
Deallocationp[ioverflow]=v

Overflow free(pfreed)

Double free

Heap action generation

Chunk 1

Chunk 2

Overlap with others

Outside of heap

Corruption in non-heap memory

Abnormality detection

void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);
// [BUG] free 'p0' again
free(p0);
void* p2 = malloc(lsz);
free(p1);
assert(p2 == malloc(lsz));

Proof-of-concept generation



Problem 3: ArcHeap cannot evaluate sec
ure properties

malloc(sz)
Allocation

free(p)
Deallocationp[ioverflow]=v

Overflow free(pfreed)

Double free

Heap action generation

Chunk 1

Chunk 2

Overlap with others

Outside of heap

Corruption in non-heap memory

Abnormality detection

void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);
// [BUG] free 'p0' again
free(p0);
void* p2 = malloc(lsz);
free(p1);
assert(p2 == malloc(lsz));

Proof-of-concept generation

Inflexible

Local 
(i.e., a single instance)

Deterministic
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Framework for Evaluating Secure Allocators

malloc(sz)
Allocation

free(p)
Deallocationp[ioverflow]=v

Overflow free(pfreed)

Double free

Heap action generation

void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);
// [BUG] free 'p0' again
free(p0);
void* p2 = malloc(lsz);
free(p1);
assert(p2 == malloc(lsz));

Proof-of-concept generation
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Examples: adjacent chunks

• Goal: Check whether the secure allocator can avoid adjacent 
chunks

• Analysis:
• Local: Check whether adjacent chunks happen by hooking allocations
• Global: Calculate the probability of adjacent chunks

• PoC: Programs with a high chance to get adjacent chunks
(e.g., > 25%)



Examples: heap spray

• Goal: Check whether the allocator is resilient from heap spray 
attacks

• Analysis:
• Local: Record chunks’ start and size by hooking allocations
• Global: Calculate the highest probability of the common address 

among multiple executions

• PoC: Programs with a high chance to get the common address



HardsHeap is extensible to cover 
various security properties

• Usable: ~100 lines of code
• Extensible: Various security properties

Modules LoC Description

Adjacent 135 Check if chunks can be adjacent

Reclaim 119 Check if a dangling chunk is reclaimable

CheckOnFree 89 Check if an allocator can detect a corrupted chunk at free

Uninitialized 78 Check if we get metadata of allocators

Heap spray 64 Check if we can guess a fixed address for every execution

SizeCheck 61 Check if a chunk can be smaller than its request

ArcHeap 574 Other heap vulnerabilities



Due to randomized mechanisms, some 
test cases are non-deterministic

void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);
// [BUG] free 'p0' again
free(p0);
void* p2 = malloc(lsz);
free(p1);
assert(p2 == malloc(lsz));

Success 
(i.e., abnormal 

behavior)

Failure

Success 

…

Is this action 
redundant?



Recall: Delta Debugging

void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);
// [BUG] free 'p0' again
free(p0);
void* p2 = malloc(lsz);
free(p1);
assert(p2 == malloc(lsz));

Failure

Success 

This action is 
redundant!

No, this action is 
not redundant!



HardsHeap addresses this issue by using 
Statistical Significance Delta Debugging (SSDD)
void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);
// [BUG] free 'p0' again
free(p0);
void* p2 = malloc(lsz);
free(p1);
assert(p2 == malloc(lsz));

void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);
// [BUG] free 'p0' again
free(p0);
void* p2 = malloc(lsz);
free(p1);
assert(p2 == malloc(lsz));

X1 %
Success ratio

X2 %
Success ratio

X3 %
Success ratio

Y1 %
Success ratio

Y2 %
Success ratio

Y3 %
Success ratio

This action is redundant if 
1) Y is not significantly worse 
or 2) Y is significantly better 
than X



Evaluation on real-world secure allocators

• Apply to 10 open-source secure allocators
• 6 from academic works

• DieHarder (CCS ’10),    FreeGuard (CCS ’17), 
• Guarder (Security ’18), SlimGuard (Middleware ’19),
• MarkUS (Oakland ’20),         ffmalloc (Security ’21)

• 4 from non-academic works
• scudo (Android)
• mimalloc (Microsoft)
• hardened_malloc (GrapheneOS)
• isoalloc (partially inspired by Chrome's PartitionAlloc)



Bugs found by HardsHeap

• 10 bugs are discovered, 5 are fixed



Example: adjacent objects in Guarder/FreeGuard

• Claim: malloc() return random chunks
void* p0 = malloc(…);
void* p1 = malloc(…);
void* p2 = malloc(…);
void* p3 = malloc(…);
…

Two malloc 100% return 
adjacent objects in a 

short time period

use time() as random source:
• seconds since 1/1/1970
• the same within 1 second

https://github.com/UTSASRG/FreeGuard/blob/bfdf6d9a5b25c3f8f974c6a2ac7bb286e5c2b296/libfreeguard.cpp#L170


Example: reclaim objects in MarkUs (1/2, Fixed)

• Claim: Do not reallocate an object if any reference exists

void* p0 = malloc(-1);
void* p1 = malloc(0x80000);
free(p1);

void* p2 = malloc(0x40000);
assert(p1 <= p2 && p2 < p1 + 0x80000);

Reallocate the object 
even if 

p2 points to it

After the very large malloc 
fails (e.g., -1), MarkUs switc
hes to unsafe reallocation

https://github.com/SamAinsworth/MarkUs-sp2020/blob/b73ee0cefd3bf89a7be11efa14ac339ddd87c7b2/bdwgc-markus/os_dep.c#L2273


Example: heap spray in mimalloc (Fixed)

• Claim: heap address is randomized within 64-bit address space

void* p0 = malloc(4TB);
// p0 is always like 0x7FFFFFFFxxx for any runs

Low entropy

mimalloc uses MAP_NORESERVE to overcommit 
memory, which is harmful for randomization

Fix: return NULL for large allocation > 1GB

https://github.com/microsoft/mimalloc/commit/9317256a4f3c76d4ce70741a357e5aadcda58529


HardsHeap also shows limitations of 
secure allocators (e.g., Large allocation)
• Known: DieHarder’s entropy is inversely proportional to size 

• HardsHeap found reliable adjacent chunks on very large allocation

• Unknown: Scudo’s entropy is similar to DieHarder’s

• Unknown: Guarder’s entropy becomes zero if we allocate 
very large chunks (> 512KB)

HardsHeap can discover these behaviors 
automatically!



SSDD is better than other minimization mechanisms

• Classic: Classical Delta Debugging

• Greedy: Only consider average probability without statistical significance

13.8% smaller 
than Greedy

48.7% higher 
reproducibility 
than Classic



Limitations & Discussion

• Limitations
• Incompleteness
• Lack of reasoning
• Only Linux support

Q: HardsHeap results imply that secure 
allocators are useless?

A: No! They are not silver bullet but are very 
useful (See our paper). Please use them!



Conclusion

• HardsHeap: Automatic ways to evaluate secure allocators
• Extensible framework
• Sampling-based testing
• Statistical Significance Delta Debugging (Please see our paper)

• 10 implementation bugs and many limitations of various 
secure allocators

• Open source: https://github.com/kaist-hacking/HardsHeap



Thank you
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