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ABSTRACT

Secure allocators have been extensively studied to mitigate heap
vulnerabilities. They employ safe designs and randomized mech-
anisms to stop or mitigate heap exploitation. Despite extensive
research efforts, secure allocators can only be evaluated by with
theoretical analysis or pre-defined data sets, which are insufficient
to effectively reflect powerful adversaries in the real world.

In this paper, we present HardsHeap, an automatic tool for
evaluating secure allocators. The key idea of HardsHeap is to use
random testing (i.e., fuzzing) to evaluate secure allocators. To handle
the diverse properties of secure allocators, HardsHeap supports
an extensible framework, making it easy to write a validation logic
for each property. Moreover, HardsHeap employs sampling-based
testing, which enables us to evaluate a probabilistic mechanism
prevalent in secure allocators. To eliminate redundancy in findings
from HardsHeap, we devise a new technique called Statistical
Significance Delta Debugging (SSDD), which extends the existing
delta debugging for stochastically reproducible test cases.

We evaluated HardsHeap to 10 secure allocators. Consequently,
we found 56 interesting test cases, including several unsecure yet
underestimated behaviors for handling large objects in secure al-
locators. Moreover, we discovered 10 implementation bugs. One
of the bugs is integer overflow in secure allocators, making them
even more invulnerable than ordinary allocators. Our evaluation
also shows that SSDD successfully reduces test cases by 37.2% on
average without a loss of reproducibility.

CCS CONCEPTS

• Security and privacy→ Systems security; Software and ap-

plication security.

KEYWORDS

Secure allocators, Fuzzing, Delta debugging, Automatic Exploit
Generation

∗Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484740

ACM Reference Format:

Insu Yun, Woosun Song, Seunggi Min, and Taesoo Kim. 2021. HardsHeap:
A Universal and Extensible Framework for Evaluating Secure Allocators. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’21), November 15–19, 2021, Virtual Event, Republic of
Korea. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3460120.
3484740

1 INTRODUCTION

Heap vulnerabilities remain prevalent security issues in applica-
tions written in memory unsafe languages such as browsers and
operating systems. According to Google [16], heap vulnerabilities
are directly related to 40% of 0-day (7 out of 18) exploits used in
the wild in 2021. Moreover, heap out-of-bounds and use after free —
are ranked as the top two vulnerability classes from 2016 to 2019 in
Microsoft’s system software [26]. The exploitation of these vulnera-
bilities often leads to serious security implications such as arbitrary
code execution or privilege escalation.

Many secure allocators [1, 12, 21, 22, 25, 28, 33, 37, 38, 45] have
been proposed to mitigate these heap vulnerabilities. Secure alloca-
tors often leverage safe designs (e.g., segregated metadata) along
with randomized mechanisms (e.g., random allocations or random
reuse) to reduce the reliability of heap exploitation with low perfor-
mance overhead. Recently, researchers have also worked on secure
allocators that support stable spatial memory safety (e.g., MarkUs [1]
or ffmalloc [45]). Thanks to such research efforts, scudo [22], a se-
cure allocator developed as a part of the LLVM project, becomes a
default allocator from Android 11.

Despite ongoing efforts on secure allocators, their security eval-
uation is merely theoretical and inflexible. To the best of our knowl-
edge, all studies regarding secure allocators [21, 28, 37, 38] only use
theoretical analysis or static workload to evaluate each mechanism.
For example, Guarder [38] only demonstrated its theoretical entropy
for randomness, and SlimGuard used 128 B, 1 KB, 64 KB objects to
compute the entropy of randomized allocation and reuse. Recently,
Entroprise [39] suggested a universal method for evaluating the
entropy of secure allocators regardless of their underlying imple-
mentations. However, the workload is still statically decided based
on a given configuration or program. For example, in its analysis,
Entroprise uses 10,000 16-byte objects to calculate the entropy of
multiple allocators. Unfortunately, even though these allocators
assume a strong adversary that can arbitrarily allocate and deal-
locate objects, these evaluations are insufficient to demonstrate
their security against a powerful attacker. [28]. In another study,
ArcHeap [49], randomly generates heap actions to discover security
issues in allocators without relying on a static workload. However,
it only focuses on classical heap exploitation techniques in a normal
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allocator (e.g., metadata overwrite), in which most secure allocators
are invulnerable. Furthermore, ArcHeap cannot support randomized
mechanisms, which are prevalent in secure allocators.

In this paper, we propose HardsHeap, an automatic tool for
evaluating the security of secure allocators. Unlike static evalua-
tions,HardsHeap randomly generates heap actions (e.g., allocation
and deallocation) similar to fuzzing in software testing. To evalu-
ate various security properties in secure allocators (see Table 4),
HardsHeap provides an extensible framework to easily build a
module for testing each property. Moreover, HardsHeap adopts
sampling-based testing to evaluate randomized protections; it re-
peats multiple experiments and computes the probability of each
security property violation. Such a random exploration can effec-
tively explore a large search space [49, 50]; however, its findings
often introduce redundancy that impedes further analysis to un-
derstand a root cause of security property violation. To overcome
this, we devise a technique, called Statistical Significance Delta
Debugging (SSDD), to reduce a test case that is only stochastically
reproducible. It combines a greedy method with statistical signifi-
cance to reduce a test case without a loss of reproducibility.

We evaluated HardsHeap with 10 secure allocators including
DieHarder [28], Guarder [38], FreeGuard [37], and scudo [22]. To eval-
uate various security properties, we built sevenmodules, which only
require hundreds of lines to implement thanks to HardsHeap’s ex-
tensible framework. Using these modules, we identified 56 security
violations in these allocators. These results show exceptions that a
secure allocator fails to protect. For example, we found that Guarder
leads to zero entropy in its random allocation for a large object (>
512 KB), unlike its claim for stable entropy. Moreover, these findings
often lead us to discover implementation bugs; we found 10 bugs in
seven allocators. More interestingly, a certain type of bugs makes
these allocators less secure than an ordinary allocator. For example,
we found that four secure allocators (Guarder, FreeGuard, isoalloc,
and ffmalloc) suffer from integer overflow. They can return an
object whose size is less than the request size if the request size
is extremely large (e.g., −8). This vulnerability can render a well-
written program insecure by imposing heap overflow. To foster
future research, we open-source our prototype of HardsHeap in
https://github.com/kaist-hacking/HardsHeap.

In summary, this paper makes the following contributions:
• We build HardsHeap, an extensible framework for eval-
uating various security properties of secure allocators.
HardsHeap adopts sampling-based testing to support ran-
domized algorithms in secure allocators.

• We devise a novel technique called Statistical Significance
Delta Debugging (SSDD) to remove redundancy from a
stochastically reproducible test case.

• We applied HardsHeap to 10 secure allocators and found
56 interesting test cases. These findings led us to discover
several serious yet hidden behaviors that violate security
properties. Moreover, they led us to discover 10 implementa-
tion bugs in secure allocators.

2 BACKGROUND

2.1 Heap vulnerabilities

A memory allocator supports a set of APIs for dynamic memory
management (e.g., malloc and free). The allocator has chosen dif-
ferent design decisions and features for high runtime performance
and low memory fragmentation, resulting in various implementa-
tions [1, 12, 21, 22, 25, 28, 33, 37, 38, 45]. This dynamic memory (i.e.,
heap) is required for a long-lived object, which is not suitable for
temporary memory (e.g., stack). Such an object is unavoidable in
non-trivial applications; therefore, heap and its allocators become
essential software components.

Owing to the excessive use of dynamic objects, an application
often suffers from various types of heap vulnerabilities. Classically,
heap vulnerabilities can be categorized into four types:

• Overflow:Writing other objects near the object boundary.
• Use-after-free: Using an object that is already freed.
• Invalid free: Freeing a non-heap object.
• Double free: Freeing an object that is already freed.

Each heap vulnerability provides a unique capability for exploita-
tion. In particular, overflow allows the modification data in the
adjacent chunks, use-after-free allows the control of a freed object
if it is successfully reclaimable, invalid free allows the modifica-
tion or allocation of a non-heap object, and double free allows
the allocation of the same object twice, which can break internal
invariants of heap allocators. By exploiting these vulnerabilities,
an attacker often causes a more serious security implication, such
as arbitrary code execution [26].

2.2 Secure allocators

Many secure allocators have been proposed [1, 12, 21, 22, 25, 28, 33,
37, 38, 45] to prevent these heap vulnerabilities. These allocators
employ specific designs to support several security features while
incurring low performance overhead. To understand the security
features of existing secure allocators, we first manually investigated
their security features, as shown in Table 1. Among the allocators,
ffmalloc (FF) and MarkUs (MA) are unique; they are specially de-
signed to prevent use-after-free, while others are developed to
mount more generic defenses against all heap vulnerabilities. Evi-
dently, these special allocators — ffmalloc and MarkUs— are more
secure than others against use-after-free; they support a stable level
of security for use-after-free, unlike the randomized allocation in
other secure allocators.

Table 1 shows the trends in the design of secure allocators. First,
due to serious security threats from metadata overwrites [36], all
allocators employ mechanisms to protect metadata, which are ei-
ther segregated metadata or metadata encoding. Second, random
allocation is the most widely used mechanism for preventing heap
overflow. It is sometimes equipped with additional features such
as a guard page, overvisioning, and check-on-free (i.e., heap ca-
nary). Third, most of allocators adopt random reuse to prevent use-
after-free attacks. Moreover, ffmalloc and MarkUs have no other
protections for use-after-free because their own mechanisms are
believed to be self-sufficient; ffmalloc employs one-time allocation
and MarkUs marks dangled objects to exclude them from reclama-
tion. Finally, all secure allocators identify invalid free and double
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Abbr. Allocators

DI DieHarder [28]
FF ffmalloc [45]
FR FreeGuard [37]
GU Guarder [38]
HA hardened_malloc [12]
IS isoalloc [33]
MA MarkUs [1]
MI mimalloc-secure [25]
SC Scudo [22]
SL SlimGuard [21]

(a) Secure allocators and their abbre-

viations for brevity

Security features Security Properties DI FR GU HA IS MI SC SL FF MA

Segregated metadata Prevent metadata-based attacks ✓ ✓ ✓ ✓ ✓ ✓ ✓
Metadata encoding Prevent metadata-based attacks ✓ ✓ ✓

Random allocations Reduce reliability of overflow attacks ✓ ✓ ✓ ✓ ✓ ✓ ✓
Guard pages Prevent cross-object overflows ✓ ✓ ✓ ✓ ✓ ✓
Overvisioning Reduce the impacts of overflow attacks ✓ ✓ ✓
Check-on-free Timely detect overflow attacks ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Random reuse Reduce reliability of use-after-free attacks ✓ ✓ ✓ ✓ ✓ ✓ ✓
Destroy-on-free Mitigate use-after-free attacks ✓ ? ?
Use-after-free prevention Prevent reclamation of a dangling object ✓ ✓

Detect invalid frees Prevent invalid free attacks ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Detect double frees Prevent double free attacks ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓: Supported, ?: Optional
(b) Security features that existing secure allocators support.

Table 1: Existing secure allocators and their security features. We manually investigate them according to their documentation and papers.

Since mimalloc is a not secure allocator by default, we only consider its secure mode in this paper.

free. If an allocator can manage an object status (e.g., an object is
freed or not) in a safe place, it is relatively inconsequential to avoid
these vulnerabilities. By using the status, the allocator can detect a
suspicious object (e.g., an already freed one) at free.

3 DESIGN GOALS

Similar to previous works [21, 38], we analyzed the security prop-
erties of secure allocators in Table 1; however, this analysis is in-
sufficient to evaluate their security. In this section, we first discuss
limitations of the existing manual analysis. Then, we show the cor-
responding design goals of HardsHeap to overcome these issues
in evaluating secure allocators systematically and thoroughly.
Implementation-agnostic security testing. To evaluate the se-
curity properties of secure allocators, we should devise a way to
evaluate them regardless of their different implementations. In
particular, secure allocators have made unique design decisions
to satisfy their own security and performance requirements. As a
result, even though many secure allocators have security features
in common (see Table 1), their underlying implementations are
extremely diverse. For example, allocators individually define a
large object that is allocated by mmap instead of sbrk; SlimGuard uses
128 KB as its threshold for large objects where Guarder uses 512
KB. Therefore, it is impossible to evaluate various secure allocators
with statically and manually crafted test sets. To overcome this,
HardsHeap employs random testing (i.e., fuzzing) to arbitrarily call
APIs for dynamic memory management and externally observes
security properties of secure allocators in order to evaluate them
(see §5.2).
Quantitative evaluation. We also need to quantitatively evaluate
security properties. Most of the existing security analyses for secure
allocators are binary; they only mark whether a certain allocator
supports a specific security feature (as shown in Table 1) without
further analyzing its quality. However, it is insufficient to evaluate
the security of secure allocators. For example, Silvestro et al. [38]
show that both FreeGuard and DieHarder support random allocation.
However, their mechanisms are relatively weak because FreeGuard’s
entropy is extremely low (i.e., 2 bits) while DieHarder’s is unstable
and varies across object sizes (i.e., larger objects are less randomly
allocated). To address this issue, we require a quantitative analysis.

To this end,HardsHeap performs sampling-based testing; it reports
a security violation with its probability from repeated experiments
(see §5.3).
Explainability. Even though random exploration is effective in
discovering an erroneous case, its findings naturally bring redun-
dancy, which limits further analysis for understanding the issue.
To eliminate this redundancy, delta debugging [49, 51] is widely
used; however, it assumes the reproducibility of failures. To apply
delta debugging in a stochastic environment, which is prevalent
in secure allocators, we devise a new technique called Statistical
Significant Delta Debugging (SSDD). This technique combines a
greedy method with statistical significance (see §5.4) to further
reduce the test case without a loss of reproducibility. According
to our evaluation in §8.2, SSDD successfully reduce test cases by
37.2% while preserving their original probability.

4 THREAT MODEL

In this section, we present our threat model for heap vulnerabil-
ities, which is powerful yet realistic to extensively evaluate the
security of secure allocators. First, an attacker can allocate objects
of an arbitrary size and can deallocate objects in an arbitrary order.
This capability highly depends on applications; however, compli-
cated software such as web browsers is often equipped with it. For
example, in JavaScript, attackers can allocate a heap object of an
arbitrary size using ArrayBuffer, and they can also deallocate it by
nullifying its reference. Second, the attacker can write arbitrary
values to a predefined memory region, which allows them to craft
arbitrary fake chunks for abusing allocators. Third, the attacker can
repeatedly trigger one of heap vulnerabilities in §2.1 (i.e., overflow,
use-after-free, invalid free, or double free). However, it is limited to a
single bug type. This simulates a realistic situation for exploitation;
The attacker attempts to exploit an application by reusing a single
vulnerability multiple times. We also assume that the attacker has
no extremely powerful primitive such as arbitrary writes. This de-
motivates the attacker to launch heap exploitation, enabling easier
attacks. We note that this model assumes the worst-case scenario
for heap exploitation, which is consistent with other studies on
secure allocators [28, 37, 38, 49].
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5 DESIGN

In this section, we illustrate the design of HardsHeap to evaluate
various security properties in secure allocators.

5.1 Workflow

Figure 1 shows the high-level design and workflow of HardsHeap.
1 HardsHeap relies on a generic binary-based fuzzer,

(i.e., AFL [50]) to generate random byte stings. Subsequently,
HardsHeap encodes them into heap actions using its decoder [30,
49]. The heap actions consist of four types: allocation, dealloca-
tion, memory writes, and bug invocation. We further discuss how
HardsHeap generates them in §5.2.

2 HardsHeap runs the decoded heap actions with a secure
allocator for analysis (§5.3). HardsHeap uses a standard library
hooking technique (i.e., LD_PRELOAD) to use a secure allocator im-
plementation for its execution. To handle the diversity of security
properties, we implementHardsHeap’s sampling-based testing for
each security property in a special component, referred to as a mod-
ule. This module performs two types of analyses: local and global.
The local analysis installs several hooking functions to heap actions
to control them and gather information. These hooking functions
usually report the occurrence of a security property violation (e.g.,
adjacent chunks) if such a violation is locally checkable. Otherwise,
they gather data and transmit them to the next global analysis.

3 After locally running heap actions multiple times (i.e., sam-
pling), the global analysis calculates the probability of a secu-
rity property violation. HardsHeap calculates the probability in a
straightforward manner — the number of occurrences of security
violations divided by the total number of trials.

4 If the probability is larger than a predefined threshold (0.25
in our prototype), HardsHeap generates Proof-of-concept (PoC)
code. Because of its random nature, HardsHeap’s test case often
contains non-essential actions; therefore, HardsHeap leverages a
technique called Statistical Significance Delta Debugging (SSDD)
(see §5.4) to reduce it. Finally, it produces a PoC code written in the
C language that shows security violations of secure allocators.

5.2 Heap Action Decoding

HardsHeap decodes a random byte string into the corresponding
heap actions. It generates four types of heap actions: allocation,

deallocation, memory writes, and bug invocation. HardsHeap’s
decoding logic is directly borrowed from ArcHeap’s; therefore, we
briefly explain it, providing further detail in [49]. It is worth noting
that ArcHeap also randomly generates heap actions likeHardsHeap;
however, it is limited to evaluating a normal allocator because it
cannot support various yet randomized security properties of secure
allocators.

The following explains each type of heap actions generated by
HardsHeap to evaluate secure allocators.
Allocation. HardsHeap allocates memory with randomized sizes
using malloc. HardsHeap chooses its allocation size carefully to
reduce its search space. It has four types of strategies to select
allocation sizes: 1 random size, 2 other chunk’s size, 3 special
values (e.g., -1 or 0), and 4 offsets between pointers (e.g., heap
pointers or its global buffer to craft fake chunks). The last strategy
is required to discover integer overflow in handling allocations;
others are fairly intuitive strategies for evaluating allocators. For
further analysis, HardsHeap also maintains both the request size
and actual size of an allocated object; HardsHeap achieves the
request size by tracking a malloc’s argument and retrieves the
actual size using malloc_usable_size API.
Deallocation. HardsHeap also randomly picks an object and deal-
locates it. HardsHeap avoids buggy situations (e.g., double free),
which are not controlled by HardsHeap, by tracking an object’s
allocation status. In particular, HardsHeap maintains a bitmap
whose bit represents whether a corresponding object is deallocated
or not. Then, HardsHeap simply ignores the execution of a deallo-
cation action if it tries to deallocate already freed objects.
Memory writes. HardsHeap also writes memory with randomly
generated values. It has two types of memory to write: heap chunks
and a global buffer. HardsHeap uses heap chunks to test whether
an allocator is resilient to modify its internal data in heap objects.
Moreover, HardsHeap uses a global buffer to check whether an
allocator is able to distinguish its heap objects with a fake memory
region in buggy situations (e.g., invalid free or use-after-free). Simi-
lar to ArcHeap, HardsHeap only generates random values that are
related to chunk sizes or pointers instead of purely random values
to reduce its search space.
Bug invocation. HardsHeap also generates buggy actions to
evaluate secure allocators against heap vulnerabilities.HardsHeap
simulates four types of vulnerabilities that are common and widely
adopted: overflow, write-after-free, invalid free, and double free.
Overflow and double free are self-explanatory; write-after-free
allows modifying freed objects, and invalid free allows freeing a
non-heap region, which is a global buffer in HardsHeap.

5.3 Sampling-based Testing

To evaluate various security properties in a secure allocator,
HardsHeap performs sampling-based testing. Because existing
security properties are too diverse to assess them using a single
method, we rely on a manually crafted module for their evaluation.
However, thanks to HardsHeap, we only require hundreds of lines
of code for each property (see Table 2). It is worth noting that we
can reuse heap action generation and test case reduction for any
module; we only need to implement its core logic.



With given heap actions, HardsHeap’s module performs two
types of analyses: local and global. In the local analysis, the mod-
ule executes heap actions with a secure heap allocator to test and
records its behavior. For that, HardsHeap allows locating hooking
functions before and after each action (e.g., allocation and deallo-
cation). Moreover, it also allows another hooking functions that
will be called at the module’s initialization and finalization. These
hooking functions can also access the current status of heap objects,
whichHardsHeapmaintains. For example, in a module that checks
adjacent chunks, we can place a hooking function after allocation
to check whether a returned object is adjacent to current objects.
We detail the modules in §6. HardsHeap also provides a method
for communicating with its global analysis using shared memory.
Therefore, we can transmit the local analysis results to the global
analysis for further analysis.

After obtaining local analysis results, HardsHeap’s module cal-
culates the probability of security violation. In most cases, this
simply counts the number of occurrences of security violations.
However, in certain cases, more complicated analysis is required
to calculate the probability. For example, if we want to evaluate
whether an allocator is resilient to heap spraying, we first need to
compute a recurrent address in multiple executions to count its
occurrences. This recurrent address cannot be calculated in a single
instance; therefore, the global analysis performs this computation
by collecting the results of the local analysis (i.e., sampling).

5.4 Statistical Significance Delta Debugging

If the probability is greater than a pre-defined threshold, which is
set to 0.25 in our prototype, HardsHeap stores a given set of heap
actions and reduces it using Statistical Significance Delta Debug-
ging (SSDD). To reduce test cases, Delta debugging [51] is one of
the most widely used techniques; it re-runs an application with a
more reduced case to check whether the same failure can occur.
By repeating this procedure, delta debugging can reduce the test
case for the same failure. In HardsHeap, the failure corresponds
to a security violation in secure allocators, and the test case is
the set of heap actions. Unfortunately, classical delta debugging is
not directly applicable because it assumes that the failure can be
reliably reproducible; however, in evaluating secure allocators, se-
curity violations only appear stochastically because of their random
mechanisms (e.g., adjacent chunks happen in 30%).

One straw-man design for supporting stochastic events is to
use a greedy algorithm, which is shown in Algorithm 1. In par-
ticular, HardsHeap can compare the probability of a reduced test
case, which eliminates one action, with the original probability;
HardsHeap can measure both probabilities by sampling multiple
events (e.g., 100 in our prototype). If a new probability is greater
than or equal to the old one, we believe that it is safe to eliminate
the corresponding action. (Line 7). However, because of the fickle
nature of probabilities, it is likely to miss opportunities for reducing
a test case. Even if a new probability is insignificantly less than the
old one, a test case cannot be reduced using this greedy method.

To address this issue, we devise Statistical Significance Delta
Debugging (SSDD) by extending the previously mentioned greedy

Algorithm 1: Greedy & SSDD
Input :actions – actions to minimize
Input :greedy – use greedy if true, otherwise use SSDD

1 minActions := actions;
2 oldProbs := Sampling(actions);
3 for action ∈ actions do
4 newProbs := Sampling(minActions - action);
5 avgDiff = Avg(newProbs) - Avg(oldProbs);
6 if greedy then

7 if avgDiff ≥ 0 then
8 minActions = minActions - action;
9 end

10 else

11 pValue := StudentTTest(newProbs, oldProbs);
12 if avgDiff ≥ 0 or pValue ≥ 0.05 then
13 minActions = minActions - action;
14 end

15 end

16 end

Output :minActions – minimized actions

method. Unlike the greedy method, SSDD considers statistical sig-
nificance not only differences between average. To measure statisti-
cal significance, we use Student’s t-test [40]; it represents statistical
significance if its p-value is less than the threshold, which is usually
0.05. Even if a new probability is less than the old one, SSDD can
eliminate a corresponding action if the probability difference is
statistically insignificant. It is noteworthy that HardsHeap’s mod-
eling satisfies constraints for using Student’s t-test; we can use t-test
only if an objective distribution follows the normal distribution. In
particular, in evaluating secure allocators, each trial for violating a
security property (e.g., making an adjacent chunk) is a Bernoulli
process, such as coin tossing. Thus, our probability from sampling
follows a binomial distribution, which could be approximated as
a normal distribution. Thus, we are safe to use Student’s t-test to
compute statistical significance in SSDD.

We optimize this test case reduction procedure for a reliably
reproducible case by returning to classical, deterministic delta de-
bugging. Even though a certain security feature is randomized
in theory, its violation can be reliably reproducible. For instance,
Guarder’s allocation is designed to be random; however, it becomes
deterministic if we allocate an extremely large object (> 512 KB). In
such a situation, we can return to classical delta debugging without
SSDD. This is more efficient than SSDD because it requires no re-
peated experiments to compute the probability in delta debugging.

After reducing a test case, HardsHeap returns a C program as
its Proof-of-Concept (PoC) that violates a security property with
high probability. It is trivial to create a C program with heap ac-
tions because each heap action has one-to-one mapping with a C
statement. For example, allocation can be converted into malloc,
and deallocation can be converted into free. In each module, we
also add an assert statement to check whether a security violation
(e.g., adjacent chunks) occurs.

6 MODULES



Modules LoC Mode Security features Description

Adjacent
135 Random allocation, Check if chunks can be adjacent

Small + Guard page Check if adjacent chunks happen for small objects (< 1K bytes)
Cross Check if adjacent chunks have different object sizes

Reclaim 119 Random reuse Check if a dangling chunk is reclaimable
Small Use-after-free prevention Check if chunk reclaimiation happens for small objects (< 1K bytes)

CheckOnFree 89 Check-on-free Check if an allocator terminates when deallocates a corrupted chunk

Uninitialized 78 Segregated metadata Check if an allocator leaves metadata in uninitialized memory

Spray 64 (Resilient to heap spray attack) Check if subsequent allocations have no recurrent address

SizeCheck 61 (Resilient to integer overflow) Check if an allocated size is greater or equal to requested one

ArcHeap 574 (Resilient to heap vulnerabilities) [49]

Table 2: Modules that we implemented using HardsHeap. Modules can have specific modes to discover more interesting cases during their

analyses. In particular, the Small mode focuses on small objects whose sizes are less than 1 KB, and the Crossmode focuses on adjacent chunks

whose sizes are different from each other.

1 capabilities = [ ALLOC, DEALLOC ]
2
3 def post_allocate(shm, hmgr, index):
4 ’’’
5 :param hmgr: A collection of heap chunks
6 :param index: An index for an allocated object
7 :param shm: Shared memory for storing local analysis results
8 ’’’
9 obj = hmgr[index]
10 for i, other_obj in enumerate(hmgr):
11 if i == index:
12 continue
13
14 if is_adjacent(obj, other_obj):
15 shm.write(index)
16 shm.write(i)

(a) A local analysis of the Adjacent module

1 collector = defaultint(int)
2
3 def analyze_single(shm):
4 while not shm.empty()
5 i = shm.read()
6 j = shm.read()
7 collector[(i,j)] += 1
8
9 def calculate_prob(n_runs):
10 ’’’
11 :param n_runs: The total number of runs
12 ’’’
13 return max(collector.values()) / n_runs

(b) A global analysis of the Adjacent module

Figure 2: Pseudocode for the HardsHeap’s Adjacent module. For a

brief explanation, we used Python to represent pseudocode; how-

ever, our actual prototype is written in C to avoid accidental uses of

heap allocators.

UsingHardsHeap, we implemented sevenmodules that evaluate
various security properties in secure allocators. As shown in Table 2,
their security properties are highly related to security features in
secure allocators; however, they are externally feasible to evaluate
unlike these features. Thanks to HardsHeap’s extensible frame-
work, it is easy to build a module; we only need hundreds of lines for
building modules. The most complex module is ArcHeap [49], which
discovers heap exploitation techniques (e.g., overlapping chunks)
in the presence of heap vulnerabilities. It shows the extensibility of
HardsHeap by supporting a complex module such as ArcHeap in
our framework.

In the following, we explain each module and show how to im-
plement it using the Adjacentmodule as an example. Our repository
also contains our prototype implementations for other modules.
Adjacent. The Adjacent module checks whether an attacker can
achieve adjacent chunks reliably. We present its pseudocode in
Figure 2. Many secure allocators make it challenging to achieve
adjacent chunks to mitigate overflow in corrupting sensitive data
(e.g., a function pointer) in the next chunk. To evaluate this security
property, the module’s local analysis installs a hooking function
at allocation (Figure 2a). This function iterates over all chunk ob-
jects and checks whether the other chunks are adjacent to the just
allocated one. If it discovers such chunks, it records their indices
to the shared memory for the global analysis (Lines 15–16). At the
end of the local analysis, the global analysis records the number
of adjacent chunks (Lines 3–7). Our analysis is aware of chunk
indices; they are required to identify a victim and a vulnerable
object in exploitation. As noted in §5.3, HardsHeap allows the
module to specify its actions to generate. For efficient exploration,
the Adjacent module only generates allocation and deallocation
(Line 1) After sampling 𝑛 experiments (𝑛 = 100 in our prototype),
the module computes the probability of adjacent chunks; it simply
divides the number of executions of adjacent chunks by the total
number of executions (Line 13). If this probability is beyond our
threshold (0.25), HardsHeap stores it and later generates the PoC
code after reduction.
Reclaim. The Reclaimmodule validates whether a dangling object
is reliably reclaimable in secure allocators. To use memory effi-
ciently, secure allocators should reclaim unused memory; however,
an attacker can abuse this behavior to exploit use-after-free bugs.
In particular, an attacker can reclaim a dangling object to modify
its data and use it to cause undefined behaviors. To stop this, secure
allocators often prohibit reclaiming of a dangling object (e.g., MarkUs
and ffmalloc) or make reclamation unreliable. To test whether this
mechanism works as intended, our module checks whether a newly
allocated object can occupy the already freed object while randomly
allocating and deallocating objects. Note that all freed objects in
HardsHeap are naturally dangled;HardsHeap holds these objects
in its data structure for analysis regardless of whether the objects



are freed or not. Therefore, if a secure allocator can distinguish a
dangling object from a normal one (e.g., MarkUs), it should consider
an object from HardsHeap as dangled.
CheckOnFree. The CheckOnFreemodule validates whether secure
allocators can detect overflow at free. Even though this mechanism
is limited in blocking overflow due to its specific spot to check
(i.e., free), it is quite widely used thanks to its straightforward im-
plementation and low performance overhead. Similar to the stack
canary, we can support this mechanism by placing a random value
(i.e., canary) between heap objects and checking their corruptions
by inspecting the canary at free. This also helps to debug by early
detecting overflows; however, HardsHeap only focuses on its use-
fulness in mitigating exploitation. For that, HardsHeap randomly
allocates objects, deallocates them, and triggers an overflow. At al-
location, it zeros out an object. Then, before deallocation, it checks
whether the object is still filled with zeros. Otherwise, it implies that
this object is corrupted due to overflow, which is only permitted to
modify heap object’s contents. Subsequently, CheckOnFree verifies
whether a program is still running even after free; this indicates
that an allocator fails to detect this corruption, which shows failures
in the check-on-free mechanism.
Uninitialized. The Uninitialized module checks whether an at-
tacker can leak metadata from uninitialized memory. Such a tech-
nique is widely used in exploitation because the metadata often
contain secret values for security (e.g., canary). To evaluate this,
this module randomly allocates objects and deallocates memory
while checking whether the allocated memory is zero-initialized.
It relies on the internal behavior of Linux (or other operating sys-
tems) that newly allocated memory from the kernel (i.e., pages) is
always zero-initialized. Therefore, if a memory contains a non-zero
value, we conclude that it is part of the metadata from an allocator.
Unfortunately, HardsHeap cannot determine the severity of this
leakage. Therefore, this finding could have no security implication
unlike the other module’s one. We discuss such an invulnerable
case in §10.
Spray. The Spray module checks whether an attacker can guess
any recurrent address from the secure allocators. In this regard,
the module randomly allocates and deallocates objects and checks
whether a recurrent address exists among multiple executions. Un-
like other modules, which can validate a security violation locally,
it requires global analysis because the recurrent address is only
calculable with multiple instances. To this end, in its local analysis,
this module records only object information — its start address and
size. Then, in its global analysis, it computes the recurrent address
and its corresponding probability.
SizeCheck. The SizeCheck module checks whether an allocator
holds its intrinsic invariant; the actual size of a heap object should
be greater than or equal to the request size. This invariant is often
broken if an allocator is vulnerable to an integer overflow. It is
worth noting that HardsHeap maintains both the request size and
the actual size of an object in its data structure for analysis. To
check this invariant, this module hooks the allocation and checks
whether the invariant holds using HardsHeap’s data structure for
sizes.
ArcHeap. We also port ArcHeap as a module of HardsHeap. In
short, ArcHeap attempts to detect the violation of other intrinsic

Component LoC Language

Core Library 1,697 C/C++
Minimizer 269 Python
Modules 1,306 C/C++
AFL modification 191 C

Total 3,463
Table 3: HardsHeap’s components and their Lines of Code (LoC).

We further describe each module’s LoC in Table 2.

invariants of heap allocators; heap allocators should not 1) modify
non-heap regions and 2) return a chunk that overlaps with other
memory regions. To verify this, the ArcHeap module randomly gen-
erates all heap actions (i.e., allocation, deallocation, memory writes,
and bug invocation) while validating whether the invariants hold
using shadow memory and HardsHeap’s object information [49].

7 IMPLEMENTATION

We implemented the HardsHeap’s prototype in 3,463 lines of code.
Table 3 shows HardsHeap’s components with corresponding lines
of code; eachmodule’s complexity can be estimated through its lines
of code in Table 2. As specified in §5.2, HardsHeap’s core library
is built on ArcHeap [49], which supports heap action generation.
We used American Fuzzy Lop (AFL) [50] as our underlying binary
fuzzer. HardsHeap implemented the SSDD minimizer in Python.
We utilized scipy [43] for statistical analysis, such as Student’s t-
test. It is worth noting that it is important to limit heap usage in
modules except for intended behaviors for reproducibility. More
specifically, implicit heap usage may differentiate the behavior of
allocators in an analysis phase and its PoC code, thereby making
PoC difficult to reproduce. Thus, we used C to write our module
to eliminate the accidental use of dynamic memory. In a global
analysis, we support C++ and its Standard Template Library (STL)
for convenient development. Moreover, instead of using a shared
library, we built each module as a dedicated binary because we
found that a shared library leverages a large volume of dynamic
allocations that affect an allocator’s behaviors. In AFL, we increased
its default timeout from 1 second to 10 seconds because one module
executes multiple local analyses internally (i.e., 100 by default) for
sampling; therefore, we found thatHardsHeap occasionally suffers
from numerous timeouts and fails to observe meaningful behaviors.

8 EVALUATION

To evaluate HardsHeap, this section attempts to answer the fol-
lowing questions.

• How effective isHardsHeap in evaluating the security prop-
erties of secure allocators? (§8.1)

• How effective HardsHeap’s SSDD in reducing test cases?
(§8.2)

• How many PoCs of HardsHeap can be reproduced? (§8.3)
Evaluation Setup. We performed every experiment on Intel Xeon
Gold 6248R with 256 GB RAM running on Ubuntu 20.04. We used 16
random strings for our seed files, and according to our experience,
their values are unimportant in our evaluation becauseHardsHeap



Abbr. Allocators Version Patch (LoC)

DI DieHarder [28] 6cf204ec

FF ffmalloc [45] 9e1e5825

FR FreeGuard [37] bfdf6d9a +17
GU Guarder [38] 9e85978a +17
HA hardened_malloc [12] v5

IS isoalloc [33] a683f427

MA MarkUs [1] 4c75ffd5

MI mimalloc-secure [25] v1.7.0

SC Scudo(non-standalone) [22] v11.0.0

SL SlimGuard [21] 237d842a +36, -1

Table 4: Secure allocators that are used for evaluating HardsHeap.

To specify versions for allocators, we use git commit hash or their

ownversion strings,which startwith v. Aswe can see from thePatch

column, we insert(+) or delete(-) codes in some allocators to support

malloc_usable_size()API or to optimize initialization for evaluation.

quickly converges because of its smaller search space compared to
that of classical software testing.
Secure allocators. To evaluate HardsHeap, we used 10 se-
cure allocators as shown in Table 4. To comprehensive evaluate
HardsHeap, we attempted to include as many secure allocators
as possible; we collected them from both academic projects [1, 21,
28, 37, 38, 45] and industrial projects [12, 22, 25, 33]. Because our
tool, HardsHeap, can only analyze a standalone allocator without
any program dependencies, we excluded secure allocators that are
customized for special applications, such as PartitionAlloc [11]
for the Chromium browser. Moreover, we also exclude memory
safety solutions that require modification of programs (i.e., instru-
mentation) [20, 35, 42], which are also outside the scope of this
project.

We patched some allocators (see Table 4) before the evaluation
for several reasons. First, we patched allocators with no support
for malloc_usable_size API, which HardsHeap used to obtain an
object’s size. This API is fairly straightforward to implement be-
cause all allocators already have internal routines to determine an
object size from a heap object for realloc. In particular, allocators
use an object size to optimize realloc by avoiding additional allo-
cation when an old object’s size is already greater than a newly
requested size. Therefore, we simply modified allocators to call the
internal routine in the malloc_usable_sizeAPI. Second, we patched
SlimGuard to improve its initialization. The original SlimGuard’s ini-
tialization is extremely slow because it writes NULL to its data
structures, which invokes many page copies because of copy-on-
write mechanisms in Linux. To resolve this, we modify SlimGuard

to write NULL to the data structure’s field only if its old value was
not NULL. By doing so, we could avoid redundant page copies,
thereby improving SlimGuard’s initialization by an order of magni-
tude. Finally, we also patched a weak randomness issue in Guarder

and FreeGuard. We found that this rendered our analysis inaccurate
due to its unusual random behavior. These allocators are globally
random but not locally within one second because they use times-
tamps as their random source. This seriously violates their security
guarantee. We further discuss this issue in §9.2.

1 // 0x80000 = 512KB
2 // 0x80000 + 0x1000(+1 page) - 0x10(metadata)
3 void* p0 = malloc(0x81000 - 0x10);
4 void* p1 = malloc(0x81000 - 0x10);
5 assert(p1 + 0x81000 == p0);

Figure 3: A way to make adjacent chunks reliably in Guarder.

8.1 Evaluating Security Properties

To evaluate security properties in secure allocators, we applied
HardsHeap’s modules (Table 2) to 10 secure allocators and one
baseline allocator (Table 4) for 24 hours. For the baseline allocator,
we used the default allocator in Ubuntu 20.04 that is ptmalloc2 in
glibc 2.31. Table 5 shows the maximum probability of each module’s
finding. We also show whether all findings of HardsHeap can
be reproduced deterministically (i.e., in 100%). This allows us to
understand the impact of each violation and whether the violation
is probabilistic, deterministic, or both.

In total, HardsHeap identified 56 interesting test cases in 10
secure allocators. Most of our findings demonstrate security issues
in secure allocators. However, since HardsHeap only observes
the external behaviors of allocators without reasoning, it is com-
pletely possible that HardsHeap’s results have no security impli-
cations. We discuss this limitation in §10, which is related to the
Uninitialized module.

For the baseline allocator (ptmalloc2), HardsHeap found deter-
ministic test cases in all modules, except for SizeCheck and Spray.
This is reasonable because 1) ptmalloc2 has no randomized mech-
anisms, resulting in deterministic behaviors, and 2) unexpected
behaviors from SizeCheck and Spray often relate to implementation
bugs, which ptmalloc2 is unlikely to have. In particular, unexpected
behaviors from the SizeCheck module imply an integer overflow
in an allocator, and those from the Spray module imply the weak
entropy of ASLR in heap.

In the remainder of this section, we discuss our findings in secure
allocators and their underlying reasons for all modules.
Adjacent. HardsHeap found that all secure allocators cannot stop
adjacent chunks completely [38]; it still allows making adjacent
chunks reliably in several extraordinary situations. This happens
for two reasons. First, we found that most secure allocators fail
to provide sufficient entropy in large objects. It is a well-known
behavior of DieHarder [38]; DieHarder does not provide protection
for large object allocations, as these are just diverted to mmap and
munmap. However, we discovered that even Guarder suffers from this
issue despite its claim of stable entropy (see Figure 3). In particular,
Guarder uses a raw mmap without specifying its start address if an
object size is larger than 512 KB. Unfortunately, mmap returns the
adjacent addresses in subsequent calls in Linux. Note that the mmap’s
behavior is dependent on the underlying operating system. Linux,
which we used for our evaluation, returns the adjacent addresses
in the subsequent mmap calls, while OpenBSD returns random ad-
dresses to ensure enough entropy among mappings. However, as
mentioned in DieHarder [28], we believe that secure allocators need
to work securely regardless of their underlying operating systems.
Therefore, we believe that the secure allocator is responsible for
this issue. Recently, Entroprise [39] evaluated Guarder’s allocation
entropy; however, it failed to discover this issue due to its fixed
workload (i.e., 32-byte objects) even though Entroprise could have



ptmalloc2 DieHarder FreeGuard Guarder MarkUs SlimGuard ffmalloc hardened_malloc isoalloc mimalloc scudo

P D P D P D P D P D P D P D P D P D P D P D

Adjacent 100 ✓ 100 × 100 × 100 × 100 ✓ 100 × 100 ✓ 100 × 100 ✓ 100 × 100 ×
Adjacent Cross 100 ✓ 100 × 100 ✓ 100 × 100 ✓ 100 ✓ 100 ×
Adjacent Small 100 ✓ 100 ✓ 100 ✓ 100 ✓ 40 × 100 ✓ 44 ×
Reclaim 100 ✓ 100 ✓ 100 ✓ 100 ✓ 100 × 100 ✓ 100 × 100 × 100 ✓ 100 ×
Reclaim Small 100 ✓ 100 ✓ 54 × 100 ✓

CheckOnFree 100 ✓ 100 × 100 × 100 ✓ 100 ✓ 100 × 52 × 100 ✓ 73 ×
Uninitialized 100 ✓ 100 ✓ 100 ✓ 100 ×
SizeCheck 100 × 100 × 100 ✓ 100 ✓ 100 ✓
Spray 42 × 61 × 100 ×
ArcHeap 100 ✓ 100 × 100 × 98 ×

P: The maximum probability (%), D: A mark that will be set if every test case is deterministic
Table 5: Summary ofHardsHeap’s security evaluation for one baseline allocator (ptmalloc2) and 10 secure allocators using multiple modules.

1 const bool BypassQuarantine =
2 !Size || (Size > QuarantineChunksUpToSize);

(a) A condition for quarantine in scudo.

1 p0 = malloc(0);
2 free(p0);
3 p1 = malloc(16);

(b) Reclamation for a small object

1 p0 = malloc(0x1000);
2 free(p0);
3 p1 = malloc(0x1000);

(c) Reclamation for a large object

Figure 4: Two ways to reliably reclaim objects (p0 → p1) in scudo.

They satisfy each condition to bypass quarantine in Figure 4a, re-

spectively.

discovered this issue if it uses a configuration to specify larger ob-
ject sizes (> 512 KB). Thanks to HardsHeap’s random exploration,
HardsHeap can automatically discovered this issue by allocating
an extremely large object without using any specific configurations.
Second, we also confirmed that three allocators (MarkUs, ffmalloc,
and isoalloc) have no random allocation support, which allows us
adjacent chunks, as shown in Table 1.
Reclaim. Because a random reuse mechanism is strongly related
to random allocations, most underlying reasons are equal to those
in adjacent chunks — failures in large allocations. However, we
also found several interesting results regarding reclamation in se-
cure allocators. First, HardsHeap successfully identified boundary
conditions to enable reliable reclamation in scudo. In particular, it
discovered two types of test cases that could reliably reclaim objects
by satisfying the conditions in Figure 4a; Figure 4b allocates a zero
size to satisfy the first condition (!Size), and Figure 4c exploits
the second condition where QuarantineChunksUpToSize is 2048 as
default (Size > QuarantineChunksUpToSize). It is worth noting that
this issue was fixed in the standalone scudo, but not in the non-
standalone scudo that we tested. Second, unlike its security feature
for defending against use-after-free vulnerabilities, MarkUs allows
unsafe reclamation with dangling pointers. We further describe
this in §9.3.
CheckOnFree. We also found that eight allocators failed to prop-
erly support the check-on-free (i.e., canary) mechanism for var-
ious reasons. First, five allocators (DieHarder, Guarder, SlimGuard,
hardened_allocator, and mimalloc) do not check the canary for
a large object. Second, isoalloc’s case is special. Even though it
claims that it supports canary in its documentation, its canary is dif-
ferent from others; it randomly places the canary between chunks,

causing it to fail to detect several corrupted chunks in free. This
implies that we require an automatic analysis like HardsHeap by
showing the insufficiency of the checklist-based, manual analy-
sis for security properties similar to Table 1. Finally, ffmalloc and
MarkUs are only designed to defend against use-after-free vulnera-
bilities; they have no support this mechanism for overflow.
Uninitialized. HardsHeap found three interesting cases in the
Uninitialized module. First, SlimGuard leaves its heap pointer to
construct a linked list in a deallocated object. This behavior can
be abused in exploitation by leaking a heap pointer to break ASLR.
Second, mimalloc leaves its metadata for large objects. We have
reported this issue to developers; however, they conclude that it
has no security implication because the metadata become obso-
lete in deallocating large objects. We further discuss this in §10.3.
Third, HardsHeap claims isoalloc’s security violation for the
Uninitialized module; however, it turns out to be a false positive.
To prevent attacks, isoalloc fills an object with a magic byte (0xde)
when the object becomes deallocated. Unfortunately, HardsHeap
has no assumption about the shape of metadata for implementation-
agnostic testing. Thus, it incorrectly considers this magic byte as
metadata leakage.
SizeCheck. These findings are related to integer overflow bugs in
allocators. We further discuss this issue in §9.1.
Spray. HardsHeap also found that three allocators — FreeGuard,
ffmalloc, and mimalloc— suffer from heap spraying. Through post-
analysis, we figured out that this occurs due to the blind use of
MAP_NORESERVE in mmap for allocating a large object. In particular,
it causes Linux to use memory overcommit; it allows to map an
extremely large size of memory (> TB), resulting in a recurrent ad-
dress among multiple executions. This issue becomes more serious
in mimalloc due to its low entropy for an initial memory address.
As a result, we could discover a deterministic case for mimalloc. We
further discuss this in §9.4.
ArcHeap. HardsHeap also discovered three security violations in
the ArcHeap module. In particular, we found that SlimGuard fails to
check invalid free properly due to its implementation bug.Moreover,
HardsHeap found that both mimalloc and DieHarder are vulnera-
ble to double free, resulting in overlapping chunks. DieHarder’s
bug is equivalent to the ArcHeap’s finding [49]; This is related to
DieHarder’s non-protection of large objects. mimalloc’s violation is
also similar to the old ArcHeap’s finding; however, we found that



mimalloc has introduced a stochastic defense to mitigate this. This
defense successfully stops a 100% reliable attack; however, it still
allows overlapping chunks in a high probability (∼ 50%). Thanks to
our sampling-based testing, HardsHeap successfully discovered
this issue unlike ArcHeap, which only works in a non-random envi-
ronment.

8.2 Statistical Significance Delta Debugging

To demonstrate the effectiveness of our delta debugging, we applied
three types of delta debugging techniques — classical, greedy, and
SSDD— to reduce test cases in §8.1. We exclude test cases that are
always reproducible in our evaluation because all of the techniques
switch to using the classical method for optimization, as explained
in §5.4.

Figure 5 shows the results of our test case reduction using the
above techniques. This shows that SSDD successfully reduces test
cases by 37.2% on average, helping further root cause analyses.
Moreover, SSDD outperforms other methods, and it it further re-
duces test cases without losing reproducibility. In particular, SSDD
can produce smaller test cases than the greedy method. According
to our evaluation, the SSDD’s reduced test cases are 13.8% smaller
than those from the greedy method on average (see Figure 5 (a)).
The classical method can reduce test cases further; however, it
significantly reduces reproduction probabilities due to its careless
analysis of stochastic findings. As a result, the classical method
results in 48.7% lower reproducibility compared to SSDD, whereas
SSDD’s probabilities are similar to the original ones (see Figure 5
(b)).

It is worth noting that the greedy method sometimes produces
smaller cases than SSDD (e.g., see SL AD in Figure 5). At first glance,
these results appear to be unusual because SSDD’s approach is
more aggressive than the greedy approach. Essentially, the greedy
method’s condition for reduction is sufficient to satisfy the SSDD’s.
However, this is still explainable because of the nature of stochas-
ticity. In particular, it is possible that a single action can satisfy the
greedy method’s stronger condition for the reduction but not the
SSDD’s weaker condition because both methods rely on distinct
sampling results. Moreover, HardsHeap sometimes fails to reduce
test cases from Guarder and FreeGuard properly. This is because
these allocators pre-allocate huge memory for their dynamic mem-
ory management (e.g., 64 TB in FreeGuard), resulting in system-level
instability.

8.3 Reproducibility

The HardsHeap’s findings are highly reproducible thanks to
its straightforward analysis. To measure the reproducibility of
HardsHeap, we created and ran PoCs, which are obtained from
§8.1. Note that HardsHeap’s PoC is equipped with assertions to
ensure security violations. For example, the Adjacent module as-
serts that two chunks are adjacent using their pointers and sizes, as
shown in Figure 3. Similarly, the SizeCheckmodule checks whether
the actual size of a chunk is smaller than the request size (see Fig-
ure 6). Only exception is the Spray module; its PoC has no proper
assertions because the current prototype of HardsHeap lacks a
global analysis in building a PoC program; this analysis is required
for the Spray module to identify the recurrent address. Therefore,

Total

Failures Failures

Success

(Generation) (Reproduction)

3,343 684 34 2,625 (78.5%)
Table 6: The reproducilbity of HardsHeap. We could reproduce

78.5% of test cases found by HardsHeap thanks to HardsHeap’s

straightforward analysis.

we manually verified PoC programs for the Spray module whether
they are reproducible.

As shown in Table 6, HardsHeap successfully generated 2,659
PoCs among 3,343 cases, and we successfully reproduced 2,625
test cases among them, which accounted for 78.5% of the total test
cases. Most of the failures in generating PoCs come from incom-
plete PoC code because HardsHeap could be terminated due to
system failures in allocators (e.g., memory exhaustion). Moreover,
PoCs fail to be reproduced because 1) HardsHeap’s memory lay-
out could be different from a standalone PoC program because
of its data structure, and 2) PoC could terminate early due to our
assert to check security violations; however, in the analysis phase,
HardsHeap can further explore for finding next security viola-
tions. Note that HardsHeap successfully discovered other variants
that are successfully reproducible for finding security violations of
secure allocators. We also believe that HardsHeap’s reproducibil-
ity is fairly high (78.5%), which is sufficient for evaluating secure
allocators.

9 CASE STUDY

Although many test cases fromHardsHeap are caused by intended
trade-offs between security and performance, HardsHeap also
found several implementation bugs, which show unexpected be-
haviors in secure allocators, as shown in Table 7. In the following,
we describe each implementation bug in detail.

9.1 Integer Overflows in Multiple Allocators

HardsHeap found an integer overflow in memory allocation in
several allocators. It is quite straightforward to trigger integer over-
flows in allocators (e.g., malloc(-8)). However its impact is huge;
this bug can render a safe code under an ordinary allocator vul-
nerable. Let us assume that we have a program that reads a size,
allocates a heap object with the size, and reads data up to the size.
Although the program is correctly implemented, an attacker can
trigger a heap overflow by giving an extremely large size (e.g., -8) to
cause internal overflow of the allocator. Then, the allocator returns
an object whose actual size is much less than the requested one due
to its integer overflow, resulting in a heap overflow.

9.2 Predictable Seeds in FreeGuard and Guarder

While analyzing strange cases from the Adjacent module in
FreeGuard and Guarder, we discovered their critical randomness
issue. In particular, FreeGuard and its successor Guarder rely
on predictable seeds in their pseudo-random generator (i.e.,
srand(time(NULL))). They use this random generator in multiple
places for their secure behaviors, such as allocations and guard



AD: Adjacent, ADC: Adjacent (Cross), ADS: Adjacent (Small), AR: ArcHeap,
CH: CheckOnFree, UN: Uninitialized, RE: Reclaim, RES: Reclaim (Small), SI: SizeCheck SP: Spray

Figure 5: Test case reduction ratio and probability difference ratio in different delta debugging techniques. SSDD outperforms the greedy

method by significantly reducing test cases. Moreover, SSDD can preserve probabilities of original test cases unlike the classical method.

Allocator Module Description Status

Guarder
Adjacent Insufficient randomness due to predictable seeds R

FreeGuard R

MarkUs Reclaim
Unsafe reclamation in mmapped memory P

Unsafe reclamation due to failed allocation P

mimalloc Spray Heap spray is possible due to memory overcommit P

Guarder

SizeCheck Integer overflow in memory allocation

A

FreeGuard A

isoalloc P

ffmalloc P

SlimGuard ArcHeap Insufficient check for invalid free R

R: Reported, A: Acknowledged, P: Patched
Table 7: Implementation bugs in secure allocators that are discovered by HardsHeap.

1 int main() {
2 void* p0 = malloc(-1);
3 assert(malloc_usable_size(p0) < -1);
4 }

Figure 6: PoC code that triggers an integer flow in ffmalloc found by

the SizeCheck module.

page placement, thereby making them predictable. We could dis-
cover this problem thanks toHardsHeap’s sampling-based testing;
HardsHeap reported that a certain test case from these allocators
can always be reproducible in a specific time window. After inves-
tigating its root cause, we concluded that it occurs because of this
weak random seed based on the current timestamp. We reported
this issue to the developer and await their response.

9.3 Unsafe reclamation in MarkUs

HardsHeap also found unsafe reclamation in MarkUs; it is a secure
allocator that is specially designed for preventing use-after-free
(UAF). MarkUs prevents UAF attacks by forbidding the reallocation
of an object with its dangling pointer. Unlike its theoretical guaran-
tee, HardsHeap found that MarkUs still allows reclaiming memory
for a dangling pointer. In particular, HardsHeap found two cases
for unsafe reclamation in MarkUs. The first bug was caused by the
simple error of omitting the mapped memory in their analysis;
however, the second bug is more interesting. Figure 7 shows the
simplified PoC code for the second MarkUs bug. This PoC first trig-
gers an oversized allocation by calling malloc(-1) (Line 4). This
large allocation caused sbrk failure, and MarkUs shifted to use mmap

for further allocation. Unfortunately, MarkUs’ security mechanism
stopped working after this exceptional state and allowed unsafe



1 int main() {
2 void* p0 = malloc(-1);
3 void* p1 = malloc(0x80000);
4 free(p1);
5 void* p2 = malloc(0x40000);
6
7 // p2 reclaimed p1’s region even p1 is dangling
8 assert(p1 <= p2 && p2 < p1 + 0x80000);
9 }

Figure 7: PoC code that triggers unsafe reclamation in MarkUs even

with a dangling pointer (i.e., p1).

reclamation. To fix it, the latest version of MarkUs disables this mmap
feature because it will only occur with this oversized allocation,
which rarely happens in normal applications. This shows the effec-
tiveness of HardsHeap in discovering unexpected bugs in secure
allocators.

9.4 Heap spray in mimalloc

HardsHeap also found that mimalloc is vulnerable to heap spraying
attacks if an attacker can control the allocation size. For example,
if we request 4 TB size memory in mimalloc, it successfully returns
a valid object, which always includes 0x7FFFFFFF000 in its address
range regardless of randomization. It happens that mimalloc always
turns on memory overcommit by setting MAP_NORESERVE in its mmap
call. As previous work has demonstrated [29], memory overcommit
should be carefully used; otherwise, it can allow us to break ASLR.
Thanks to our reporting, mimalloc fixed this issue by restricting the
maximum allocation size for sufficient entropy in allocation [48].
We found that Guarder and FreeGuard have similar issues; however,
they aremuch better than mimalloc because their memory addresses
have higher entropy than mimalloc’s.

9.5 Other issues

HardsHeap also found that SlimGuard is insufficient to validate
invalid free, which is similar to ptmalloc2 [3, 36]. Even though
SlimGuard claims its safety in invalid free, HardsHeap successfully
found a counterexample for it.

10 DISCUSSION & LIMITATIONS

10.1 Usefulness of Secure Allocators

It is worth noting that our findings do not imply that secure alloca-
tors are useless. In fact, HardsHeap shows that secure allocators
are effective in defending against several types of heap vulnerabili-
ties. In particular, our evaluation shows that most secure allocators
work well in securing small objects, which are prevalent in normal
applications (see §8.1). Basically, HardsHeap only demonstrates
that secure allocators are no silver bullet for heap vulnerabilities.
They have several limitations particularly for large objects and
elastic objects whose sizes are controllable. Moreover, they could be
incorrectly implemented similar to other software. However, these
facts do not completely eliminate the advantages of secure alloca-
tors. Therefore, we should use secure allocators for better security.

10.2 Windows support

We believe that HardsHeap can be extended to support other plat-
forms such asWindows. Microsoft Windows is particularly interest-
ing compared to other platforms; it supports a hardened allocator

at the system level, which is known as Low-Fragmentation Heap
(LFH) [24]. To this end, HardsHeap requires considerable changes
to support Windows because of its significant differences from
Linux. In particular, HardsHeap requires to use unique APIs for
dynamic memory management such as HeapCreate, HeapAlloc, and
HeapFree. Even though Windows also supports the standard C APIs
such as malloc and free, they are just wrappers of the aforemen-
tioned APIs and are insufficient to evaluate unique features in Win-
dows. Moreover, HardsHeap needs to use different system-level
mechanisms such as signals and process creations, which are tightly
coupled with the underlying platforms. For example, HardsHeap
currently uses SIGUSR2 to notify its finding to the fuzzer; however,
it is no longer usable in Windows.

10.3 Lack of reasoning

Even thoughHardsHeap’s approach is applicable to diverse alloca-
tors owing to its implementation-agnostic approach, it is occasion-
ally insufficient to understand the security implications of its find-
ings due to a lack of reasoning. During our evaluation, HardsHeap
foundmetadata leakage in mimalloc; we can leakmetadata by deallo-
cating a large object. Although this finding surprises the developers
of mimalloc, we found that it has no security implication after fur-
ther analysis. In more detail, leaked metadata from HardsHeap
become obsolete when mimalloc marks its underlying pages as free.
This happens in large object deallocations, which are required for
leakage. Unfortunately, HardsHeap fails to reason this because it
works without understanding the allocator’s implementation.

10.4 Incompleteness

Similar to classical fuzzing, HardsHeap cannot guarantee any
completeness in the security of secure allocators. In other words,
HardsHeap only indicates us the existence of security violations
but cannot prove their non-existence. Moreover, it is impossible
to argue that the existing modules in HardsHeap are sufficient
for evaluating security allocators. It happens that we empirically
designed and implemented them without formal definitions of se-
cure allocators. We believe that it is still debatable what security
properties are sufficient to secure allocators. Thus, we leave it as
future work to formally define these security properties against
heap vulnerabilities.

11 RELATEDWORK

11.1 Security Analysis of Secure Allocators

Many secure allocators have been developed to mitigate heap vul-
nerabilities. DieHarder [28] designs a secure allocator that supports
several secure mechanisms, including segregated metadata and
randomized allocations after formally analyzing existing attacks
and allocators. FreeGuard [37] further reduces runtime overhead
even though its security guarantee could be weaker than that of
DieHarder. Moreover, Guarder [38] addresses the unstable security
of previous works with low overheads. Microsoft also has employed
several security mechanisms in its default allocator [7]. Moreover,
scudo [22], a hardened allocator in the LLVM project, becomes a
default allocator in Android’s native code.



Despite such efforts to develop secure allocators, their security
evaluations still remain ad-hoc. Most existing studies rely on man-
ual analysis of security experts or theoretical analysis [5, 7, 28, 38].
There have been several studies for automatically evaluating the se-
curity of allocators. Heelan et al. proposes pseudo-random black box
search for discovering adjacent chunks. HeapHopper [10] adopts
bounded model checking to evaluate the security of allocators,
while ArcHeap [49] leverages random testing. However, they are
limited to non-secure allocators and cannot support randomization,
which is essential in evaluating secure allocators. In comparison,
HardsHeap can successfully evaluate secure allocators automat-
ically and thoroughly thanks to its extensibility for supporting
various security properties as well as sampling-based testing for
handling randomization. Recently, Entroprise [39] evaluates the
entropy of randomized allocations in secure allocators; however, it
only supports pre-defined object sizes unlike HardsHeap. Entro-
prise can determine the actual entropy of memory as allocated by
actual applications, which HardsHeap cannot support.

11.2 Delta Debugging

Delta debugging [19, 51] is a widely used technique for minimiz-
ing failing test cases; it launches a program with a smaller input
and checks whether the failure still occurs with this reduced one.
By repeating this process, delta debugging can find the minimum
input for failure. HDD [27], C-Reduce [31], and Perses [41] expand
this idea by exploiting a hierarchical structure in programming
languages. Groce et al. [13, 14] adopt delta debugging to speed
up software testing even without failures. Unfortunately, none of
them assumes the stochastic failures that HardsHeap attempts to
find. Choi et al. [9] and Hammoudi et al. [15] deal with stochastic
failures using record and replay. However, record and replay is
limited in HardsHeap because it cannot measure the probability
of bad events (e.g., adjacent chunks), which is important for the
evaluation of secure allocators. Thus, we devise another technique
called SSDD, which repetitively samples to achieve the current
probability in reduction.

11.3 Automatic Exploit Generation

There has been a line of research works for automatic exploit gen-
eration [4, 6, 17, 18, 23, 32, 34, 44]. Avgerinos et al. and Schwartz
et al. [2, 34] explore fully automated exploit generation for stack
overflow and format string bugs. To address the complexity of heap
vulnerabilities, Repel et al. [32] and Heelan et al. [18] leverage mod-
ular approaches. Moreover, FUZE [47] and KOOBE [8] successfully
demonstrate automatic exploit generation to a more complex target,
Linux Kernel, for use-after-free and out-of-bounds vulnerabilities,
respectively. However, these studies only focus on default alloca-
tors with limited security mechanisms or rely on domain-specific
knowledge for exploitation. Even though HardsHeap cannot sup-
port end-to-end automatic exploit generation like these works, we
believe that HardsHeap’s findings can be used as a part of auto-
matic exploit generation to secure allocators similar to other works
for discovering useful exploit primitives [10, 23, 46, 49].

12 CONCLUSION

In this paper, we present HardsHeap, a new framework for au-
tomatically evaluating secure allocators. HardsHeap supports an
extensible framework thatmakes it easy to build an analysis for each
security property. Moreover, HardsHeap employs sampling-based
testing and Statistical Significance Delta Debugging (SSDD) to sup-
port randomized security mechanisms. We applied HardsHeap to
10 secure allocators to show thatHardsHeap’s approach is effective
in evaluating the security in secure allocators. Using HardsHeap,
we also successfully discovered 10 implementations bugs that seri-
ously harm the security properties of the allocators.
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