
Fuzzing@Home: Distributed Fuzzing on
Untrusted Heterogeneous Clients

-The 25th International Symposium on Research in Attacks, Intrusions and Defenses
(RAID2022)

Daehee Jang, Ammar Askar, Insu Yun, Stephen Tong, Yiqin Cai, Taesoo Kim

Large-Scale Fuzzing
There are so many codes to fuzz/test
 OSSFuzz has more than 300 open-source projects ported for fuzzing
 Google use ClusterFuzz: immense distributed fuzzing infrastructure
 Mainly inspired from ClusterFuzz

1

Background - ClusterFuzz
Google’s Large-Scale Distributed Fuzzing System
 ~ 30,000 VM Instances
 ~ 340 open source fuzz targets running
 ~ 25,000 bugs discovered.

Designed as Private Infrastructure
 Single owner (Google) controls overall infrastructure/results

2

Fuzzing@Home - Motivation
Why not apply “@home” idea to fuzzing?
 Fuzzing works better in parallel
 People can utilize spare computing power for fuzzing
 Organizations can collaborate for fuzz-testing their product
 Multiple companies develop software together
 Multiple companies do bug-bounty together

3

Introduction & Design

4

Fuzzing@Home Overview

Components
 Fuzzing Pool: Group of people (nodes) fuzzing the same target
 Fuzzing Node: Organization/People’s computing device (PC, laptop, mobile, …)
 Heterogeneous, Untrusted

 Control Server: Fuzzing pool master
 Verification, Deduplication, Scheduling optimization…

5

Fuzzing@Home – Security Problem
Collaborative “public” network infrastructure for fuzzing
 Collaborating participants are untrusted
 Fuzzing may involve money

 How do we tell if a participant is working?
 -> Goofing Problem

Solution: Proof-of-Work (PoW) for fuzzing
 Design Proof-of-Fuzzing-Work (PoFW)

6

Fuzzing@Home – Security Problem
PoW vs PoFW?
 Existing PoW computations have estimated time to get result
 E.g., Breaking RSA-XXX with CPU-YYY usually takes ZZZ hours.

 Existing PoW computations gives output data as a computing result (challenge user)
 E.g., Bitcoin mining (hash)
 E.g., Cryptographic algorithm (decrypted data)

 Fuzzing has no estimated time to get result
 E.g., Crashing chrome-v8 with CPU-YYY usually takes ZZZ hours..??

 Fuzzing do not yield result output data in its execution (can’t challenge user)
 E.g, void function

 Idea: Use code-coverage as proof-of-work in fuzzing
 Fuzzing always takes input data -> produce code-coverage

7

Proof-of-Work tailored for Fuzzing
Proof of Fuzzing Work?
 Hash code-coverage information into a single SHA512 string
 “execution hash”, use it as fingerprint
 SHA512 of code coverage information

Steps
 1. Control server randomly picks a seed number and initial fuzzing input
 2. Control server pre-calculate a single “execution hash”
 3. Control server challenge a node to find the same seed number as an answer
 range of seed number and fuzzing input is given

 4. Node exhaustively search possible seed numbers
 Finding seed number is guaranteed if all numbers are tried
 Control server verify result in O(1) time/memory complexity

8

PoFW Overview

9

Face two problems in “execution hash”: Hash collision, Non-determinism

Challenge in PoFW design
Hash Collision
 Different input, but same code coverage
 Depends on “complexity” of target application
 Need evaluation

Non-Determinism
 Same input but different code coverage
 Also depends on “complexity” of target application
 Need evaluation

PoFW needs
 Low collision rate
 Low non-determinism rate

10

Evaluation – PoFW Hash Collision

11

Evaluation – PoFW Nondeterminism

12

Evaluation – Cheat Prevention (simulation)

13

Solution: make system more beneficial to honest users!

Deployment & Evaluation

14

Test Deployment (7~800 beta testers)

15

Evaluation Environment
Distributed Servers up to #1,000 cores
 Large-Scale pool evaluation
 Coverage Saturation
 State Synching
 Other performances…

ClusterFuzz
 comparison evaluation
 Used 100 cores

16

Evaluation - Scalability

17

Evaluation – ClusterFuzz Comparison

18

WASM Fuzzer Running Example

19

http://fuzzcoin.gtisc.gatech.edu:8000/

http://fuzzcoin.gtisc.gatech.edu:8000/

Discovered Bugs (as in ClusterFuzz)

20

Other Issues (see paper)
Discovery Stashing Problem
 Collaborator selectively not reporting findings

Performance Optimization
 How to optimize work verification loads?

Implementation Details
 How to integrate fuzzer for Fuzzing@Home?

WASM-based fuzzer
 What are the benefits/limitations?

21

Future Work/Ideas..
Utilize Proof-of-Fuzzing-Work for block-chain?
 As in bitcoin PoW which is a lot of electricity waste

Fuzzing + Bitcoin?
 Bitcoin miners find hash collision
 Fuzzcoin miners find errors

Utilize fuzzing to quantify bug-bounty?
 Difficult to find crash -> more rewards for bug-bounty?

22

+

Thank you

23

	Fuzzing@Home: Distributed Fuzzing on Untrusted Heterogeneous Clients�-The 25th International Symposium on Research in Attacks, Intrusions and Defenses (RAID2022)
	Large-Scale Fuzzing
	Background - ClusterFuzz
	Fuzzing@Home - Motivation
	���Introduction & Design�
	Fuzzing@Home Overview
	Fuzzing@Home – Security Problem
	Fuzzing@Home – Security Problem
	Proof-of-Work tailored for Fuzzing
	PoFW Overview
	Challenge in PoFW design
	Evaluation – PoFW Hash Collision
	Evaluation – PoFW Nondeterminism
	Evaluation – Cheat Prevention (simulation)
	����� Deployment & Evaluation�
	Test Deployment (7~800 beta testers)
	Evaluation Environment
	Evaluation - Scalability
	Evaluation – ClusterFuzz Comparison
	WASM Fuzzer Running Example
	Discovered Bugs (as in ClusterFuzz)
	Other Issues (see paper)
	Future Work/Ideas..
	슬라이드 번호 24

