
QUERYX: Symbolic Query on Decompiled Code for Finding Bugs in COTS Binaries

HyungSeok Han†∗, JeongOh Kyea†, Yonghwi Jin†, Jinoh Kang†, Brian Pak†, Insu Yun∗
†Theori Inc., ∗KAIST

Abstract—Extensible static checking tools, such as Sys and
CodeQL, have successfully discovered bugs in source code. These
tools allow analysts to write application-specific rules, referred
to as queries. These queries can leverage the domain knowledge
of analysts, thereby making the analysis more accurate and
scalable. However, the majority of these tools are inapplicable to
binary-only analysis. One exception, joern, translates a binary
code into decompiled code and feeds the decompiled code
into an ordinary C code analyzer. However, this approach is
not sufficiently precise for symbolic analysis, as it overlooks
the unique characteristics of decompiled code. While binary
analysis platforms, such as angr, support symbolic analysis,
analysts must understand their intermediate representations
(IRs) although they are mostly working with decompiled code.

In this paper, we propose a precise and scalable symbolic
analysis called fearless symbolic analysis that uses intuitive
queries for binary code and implement this in QUERYX. To
make the query intuitive, QUERYX enables analysts to write
queries on top of decompiled code instead of IRs. In particular,
QUERYX supports callbacks on decompiled code, using which
analysts can control symbolic analysis to discover bugs in the
code. For precise analysis, we lift decompiled code into our
IR named DNR and perform symbolic analysis on DNR while
considering the characteristics of the decompiled code. Notably,
DNR is only used internally such that it allows analysts to
write queries regardless of using DNR. For scalability, QUERYX
automatically reduces control-flow graphs using callbacks and
ordering dependencies between callbacks that are specified
in the queries. We applied QUERYX to the Windows kernel,
the Windows system service, and an automotive binary. As a
result, we found 15 unique bugs including 10 CVEs and earned
$180,000 from the Microsoft bug bounty program.

1. Introduction

Static analysis is one of the most widely used techniques
for finding bugs in code [2, 5, 6, 16, 21, 38–40, 51, 59, 60,
66–69, 72, 77–81]. Unlike dynamic analysis (e.g., fuzzing),
static analysis can achieve high code coverage without the
difficulty of obtaining inputs for high code coverage. Despite
its advantages, static analysis fundamentally suffers from the
trade-off between scalability and accuracy. More specifically,
static analysis requires to be path- and context-sensitive to be
accurate; however, this introduces serious scalability issues,
including path explosion. If we employ approximations to
address these issues, static analysis generates many false
alarms due to over- or under-approximations.

Input Analysis objects Syntactic Data-flow Symbolic

CodeQL [22] Source Source ✓ ✓ ×
Sys [7] Source LLVM IR ✓ ✓ ✓

joern [76] Source
Binary

Source
Decompiled code ✓ ✓ ×

angr [56] Binary VEX IR ✓ ✓ ✓
BAP [9] Binary BIL ✓ ✓ ✓

QUERYX Binary Decompiled code ✓ ✓ ✓

TABLE 1: Comparison between extensible static checking tools.
Notably, QUERYX is the first tool that supports symbolic analysis
on binary code using decompiled code.

To address this trade-off, many extensible static checking
tools (e.g., CodeQL [22], Sys [7], and joern [76]) have been
proposed. The key idea of these approaches is to utilize the
domain knowledge of analysts about the target application.
In particular, analysts can conduct static analysis with precise
and application-specific rules on top of these tools, rather
than relying on generic approximations alone. Furthermore,
these tools often provide a convenient method of writing
application-specific rules, which are called queries. They also
enable application-aware static analysis, such as syntactic
matching, data-flow analysis, and symbolic analysis based
on a given query, as shown in Table 1.

While these tools have achieved considerable success in
source code analysis, they are inefficient in analyzing binaries.
Except for joern, most extensible static checking tools, such
as Sys and CodeQL, can only be successfully applied to
source code. In contrast, joern supports binary analysis on
decompiled code using a fuzzy C parser; however, this
tool lacks support for symbolic analysis, which is required
for complex analyses. Moreover, these tools often require
complicated rules to be scalable analysis. For instance, Sys
requires more than 300 lines of Haskell code for heap out-
of-bound analysis. In addition to these source code analysis
tools, there exist binary symbolic analysis tools such as
angr [55] and BAP [9]. However, they have different design
philosophies that aim at supporting low-level features and
extensibility for developing other tools. They rely on an
intermediate representation (IR) to manage complexity and
support multiple architectures. Unfortunately, this requires
analysts to understand the IR generated from binary code,
even if analysts are mostly working with decompiled code.

In this paper, we propose a precise and scalable symbolic
analysis with intuitive queries for binaries, which is called
fearless symbolic analysis. We implement this in QUERYX,
which allows analysts to write queries on decompiled code.
This is motivated by that decompiled code is friendlier to
binary analysts than IR. And QUERYX supports callbacks

More analyst-friendly More analyzer-friendly

__int64 __fastcall isPalindrome(const char *a1) {
int i; // [rsp+18h] [rbp-8h]
int v3; // [rsp+1Ch] [rbp-4h]

v3 = strlen(a1);
for (i = 0; i < v3 / 2; ++i) {
if (a1[i] != a1[v3 - i - 1])
return 0LL;

}
return 1LL;

}

(a) Decompiled code.

isPalindrome:
push rbp
mov rbp, rsp
sub rsp, 0x20
mov qword ptr [rbp-0x18], rdi
mov rax, qword ptr [rbp-0x18]
mov rdi, rax
call strlen
mov dword ptr [rbp-0x4], eax
mov dword ptr [rbp-0x8], 0x0
; + 37 more instructions

(b) Assembly code.

00 | ------ IMark(0x40069a, 1, 0) ------
01 | t0 = GET:I64(rbp)
02 | t10 = GET:I64(rsp)
03 | t9 = Sub64(t10,0x0000000000000008)
04 | PUT(rsp) = t9
05 | STle(t9) = t0
06 | ------ IMark(0x40069b, 3, 0) ------
07 | PUT(rbp) = t9
08 | ------ IMark(0x40069e, 4, 0) ------
09 | t2 = Sub64(t9,0x0000000000000020)
; + 285 more instructions

(c) Intermediate representation.

Figure 1: Different representations of a binary code that checks palindrome: decompiled code, assembly code, and intermediate representation
(IR) from angr [56]. Decompiled code is more analyst-friendly than the others whereas IR is the most analyzer-friendly.

on abstract syntax tree (AST) nodes of the decompiled code.
These callbacks will be invoked after the corresponding AST
nodes are evaluated during symbolic execution. Using these
callbacks, analysts can capture or validate the desired prop-
erties. Notably, QUERYX supports JavaScript-like queries,
which are expected to reduce the learning curve of QUERYX.

Although the high-level idea is intuitive, achieving the
fearless symbolic analysis is nontrivial. For precise analysis,
QUERYX considers the unique aspects of the decompiled
code generated from a binary code. In particular, decompiled
code differs from an ordinary C program in the presence
of binary-dependent code (e.g., offset-based memory ac-
cess), binary-embedded data (e.g., global variables), and
decompiler-induced code (e.g., LOBYTE macro in IDA Hex-
Rays [28]). To address this difference, we devise DNR, a
new IR lifted from decompiled code while preserving the
semantics of the binary code. By considering the semantics
of binary code in DNR, QUERYX can perform binary-aware
and precise symbolic analysis. In addition, DNR includes
which AST node is lifted to it. Therefore, this allows analysts
to write queries based on decompiled code instead of DNR.

For scalable symbolic analysis, QUERYX performs under-
constrained symbolic execution, which starts the analysis
from function entries as UC-KLEE [52]; however, this is
insufficient for large binaries. QUERYX thus utilizes its
callback-based analysis where callbacks ensure flexible anal-
ysis and inherently represent interesting nodes for analysis.
Thus, QUERYX can filter out uninteresting paths that do not
include callbacks. In addition, QUERYX supports ordering
dependencies between callbacks. These dependencies enable
QUERYX to prune paths automatically without any com-
plicated queries. This imparts scalability to QUERYX for
supporting real-world binaries, such as the Windows kernel.

We applied QUERYX to COTS binaries: the Windows
kernel, the Windows system service, and an automotive
binary. And we wrote four queries for four types of bugs:
heap overflow, kernel memory address disclosure, path
traversal, and out-of-bound access. As a result, we found 15
previously unknown bugs including 10 CVEs, and earned
$180,000 from the Microsoft bug bounty program. We also
present that QUERYX beat existing extensible static checking
tools in terms of query writing and bug findings. And we
experimentally show the effectiveness of our path pruning.

In summary, our main contributions are as follows:
• We propose fearless symbolic analysis, a precise and

scalable symbolic analysis with intuitive queries for
binaries based on decompiled code, and implemented
it in QUERYX.

• We present binary-aware analysis to precisely analyze
decompiled code while preserving the semantics of the
unique aspects of decompiled code.

• We effectively improve the scalability of symbolic anal-
ysis with intuitive queries that specify callbacks on AST
nodes of decompiled code and ordering dependencies
between them.

• By evaluating QUERYX on the Windows kernel, the
Windows system service, and an automotive binary, we
found 15 previously unknown bugs including 10 CVEs,
and earned $180,000 from Microsoft as a bug bounty.

2. Goals and Approaches

This section discusses the goals and approaches for
accomplishing the proposed fearless symbolic analysis.

2.1. Analyst-friendly Query

As previously mentioned, static analysis is powerful but
inherently unscalable. To overcome this issue, extensible
static checking tools rely on human capabilities. Analysts
manually create queries that guide static analysis to avoid
uninteresting paths and suppress false alarms. However,
this approach is not straightforward when handling binaries
because of inconsistent representations by analysts and tools.
Unlike source-based analysis tools, binary-based analysis
tools often use IR. IR avoids the complexity of machine
code (e.g., several instruction types and side effects), sim-
plifies the analysis, and provides multi-architecture support.
Unfortunately, IR is not analyst-friendly (see, Figure 1),
and analysts always prefer to read decompiled code, which
contains more analyst-friendly information, such as types
and high-level control flows. Because of this inconsistency,
when analysts write IR-based queries, they must encode
their understandings in decompiled code into IR, thereby
complicating their query writing.

2

1 int i; // [rsp+18h] [rbp-58h]
2 int v1; // [rsp+1Ch] [rbp-54h]
3 int s[3]; // [rsp+20h] [rbp-50h]
4 int v2; // [rsp+2Ch] [rbp-44h]
5

6 memset(s, 0, 0x40LL);
7

8 // ISSUE1: Binary-embedded data
9 v2 = dword_2010A4;

10 for (i = 0; i <= 15; ++i) {
11 // ISSUE2: Binary-dependent code
12 // (e.g., out-of-bounds due to failed type inferences)
13 // ISSUE3: Decompiler-induced code (e.g., LOBYTE)
14 v1 += LOBYTE(s[i]);
15 }

Figure 2: Examples that illustrate the issues in symbolic analysis
on decompiled code. Unlike ordinary C programs. decompiled code
requires extra attention due to the presence of binary-embedded
data, binary-dependent code, and decompiler-induced code.

Our Approach: Query on Decompiled Code. To address
this issue, QUERYX allows analysts to write queries directly
based on decompiled code. Furthermore, QUERYX supports
analysts to register callbacks on AST nodes of decompiled
code using the corresponding high-level information, such
as variable names and type information, to check desired
properties while following the program execution. Notably,
callbacks are triggered right after the symbolic executor
evaluates the corresponding AST nodes.

Using decompiled code has several advantages. First,
it is architecture-agnostic, similar to IR, which naturally
supports multiple architectures. Therefore, we successfully
applied QUERYX to the x86-based Windows kernel and an
ARM-based automotive binary. Second, decompiled code
is more human-readable, which improves usability, and
allows interactive analysis. If analysts modify the decompiled
code, QUERYX can automatically leverage this change in
its analysis. Assume that QUERYX reports a false alarm for
buffer overflows because a decompiler incorrectly infers the
size of a certain variable. In this case, analysts can suppress
this false alarm by correcting the variable’s type information
in the decompiled code instead of adding a special routine
to a query. Moreover, if analysts assign a name to a certain
binary location for improved understanding, they can reuse
that name to write more analyst-friendly queries in QUERYX.

2.2. Precise Analysis on Decompiled Code

The decompiled code is similar to ordinary C code.
Therefore, joern [76] treats decompiled code identically
to standard C code. To analyze a binary code, joern first
decompiles the binary code using Ghidra [50] or IDA Hex-
Rays and then applies the existing analysis for C code. It is
enough for syntactic analysis but not for semantic or symbolic
analysis due to the characteristics of the decompiled code.

Decompiled code has characteristics that differentiate it
from standard C, and these characteristics should be carefully
managed for precise symbolic analysis. Figure 2 highlights
several issues in the symbolic analysis on decompiled code
using examples. First, the decompiled code uses binary-
embedded data (Line 9), particularly for global variables.

Symbolic analysis may result in incorrect findings without
properly modeling the environment for a binary. Second,
the decompiled code includes binary-dependent code, which
implicitly assumes memory locations. For example, in Line
14, this program seems to have out-of-bound accesses for
s, the length of which is three (Line 3). According to C
specifications, this is an undefined behavior that can result
in any consequence. However, this is erroneous reasoning
caused by incorrect type inferences of the decompiler; the
length of s is 0x10, as shown by the memset call (Line 6).
Therefore, for precise analysis, our system should be aware
of such implicit assumptions regarding memory locations.
Finally, decompilers extensively induce special functions
without explicitly including them. For example, IDA Hex-
Rays uses LOBYTE, which is a Windows macro [44] that
returns the last byte of a given argument, even in the Linux
code. This enables decompilers to readily translate binary
code into valid C code; however, QUERYX must model them
appropriately for symbolic analysis.
Our Approach: Binary-aware Analysis. To address this,
QUERYX conducts a binary-aware symbolic analysis on the
decompiled code. For this, QUERYX first lifts the decompiled
code into our IR, named DNR, and performs symbolic
analysis on it. DNR simplifies the analysis of QUERYX
by maintaining binary and decompiled code information
(e.g., the corresponding AST node). Unlike other IRs, DNR
is strongly connected to the decompiled code. Therefore,
analysts can work with decompiled code via the AST with-
out directly handling DNR. Subsequently, when QUERYX
performs memory operations on global variables, it fetches
binary-embedded data from DNR to accurately model them.
In addition, DNR includes the memory addresses of the
variables in the decompiled code. This allows QUERYX to
correctly represent binary-dependent code that seemingly vi-
olates C specifications. Moreover, QUERYX lifts decompiler-
induced routines (e.g., LOBYTE) to semantically equivalent
DNR. This eliminates the need for QUERYX to consider such
routines in subsequent symbolic analysis. Thus, QUERYX
can considerably increase the precision of the symbolic
analysis on the decompiled code.

2.3. Scalable Analysis with Intuitive Query

Symbolic analysis suffers from scalability issues due to
path explosions. To improve the scalability, Sys [7] suggested
a two-step analysis combined with fine-grained static analysis.
Sys first performs static analysis to select only interesting
paths and verifies them by symbolic analysis. This idea is
intuitive and effective. However, this burdens analysts by
requiring them to write two non-trivial queries: one for static
analysis and the other for symbolic analysis. These queries
should be written for LLVM IR, which is less intuitive
than the source code or decompiled code. For example, Sys
uses 273 lines for static analysis and 62 lines for symbolic
analysis to detect heap out-of-bound bugs. Occasionally, this
complexity can cause Sys to miss critical bugs. For instance,
we discovered that Sys missed a critical heap out-of-bound
bug due to its incomplete static analysis query (see §8.2).

3

Our Approach: CFG Reduction by Callbacks and their
Dependencies. QUERYX automatically scales its symbolic
analysis using callbacks and their dependencies, which
analysts write on the queries. As previously mentioned,
QUERYX supports registering callbacks on AST nodes for the
symbolic analysis. These callbacks inherently indicate which
nodes are important for the analysis. In addition, QUERYX
allows analysts to specify the ordering dependencies between
callbacks (e.g., malloc → memcpy), which are common in
bug findings. Using this information, QUERYX reduces
the control-flow graph (CFG) by eliminating the nodes
disconnected from AST nodes that have callbacks and are
unable to satisfy the specified ordering dependencies.

3. Overview

The primary goal of QUERYX is to symbolically analyze
decompiled code based on queries for finding bugs in COTS
binaries. In this section, we demonstrate how QUERYX
finds bugs with a running example and present the overall
architecture of QUERYX.

3.1. Running Example

To demonstrate the overall procedure of QUERYX, we
describe how QUERYX discovered a new heap overflow bug
in the Windows kernel (CVE-2021-41378) from an existing
bug (CVE-2021-31979 [47]), which was actively exploited
in the wild according to Microsoft [43]. First, we briefly
discuss the existing bug and its properties that are necessary
for writing a query. We then illustrate the query for locating
variants of this bug.

To discover the variants of CVE-2021-31979, we must
understand its root cause. For this, we use IDA Hex-Rays to
decompile RtlpCreateServerAcl, which contains vulnerable
code for CVE-2021-31979. Figure 3a shows its simplified
version. At a high level, this function copies the contents
of Aces into a new memory region. More specifically, it
calculates the total content size of Aces by enumerating them
(Line 4–8). Then, it allocates the new memory according to
the calculated size using ExAllocatePoolWithTag (Line 9).
Finally, it enumerates Aces again to copy their contents into
the new memory (Line 12–16). Because an integer overflow
check is absent when computing the total size whose type
size is 2 bytes, it can allocate smaller memory than the
contents of Aces, leading to a heap overflow.

In summary, the heap overflow bug in Figure 3a has the
following properties:

1) The allocation size of ExAllocatePoolWithTag is a 2-
byte integer type and not a constant integer.

2) A feasible path exists from the function entry through
ExAllocatePoolWithTag to memcpy.

3) The destination address of memcpy is derived from
the allocation result of ExAllocatePoolWithTag. In
addition, the copy size of memcpy can be greater than
the allocation size of ExAllocatePoolWithTag.

Based on these properties, we can write a query to
discover other heap overflow bugs, as shown in Figure 3b.

1 __int64 __fastcall RtlpCreateServerAcl(...) {
2 unsigned short AclSize = 8;
3 ...
4 if ((_WORD)AceCount) {
5 for (i = 0; i < AceCount; i++) {
6 AclSize += Aces[i]->AceSize;
7 ...
8 }
9 buffer = ExAllocatePoolWithTag(PagedPool, AclSize, ’cAeS’);

10 ...
11 AclOffset = 8;
12 for (i = 0; i < AceCount; i++) {
13 ...
14 memcpy (buffer + AclOffset, Aces[i], Aces[i]->AceSize);
15 AclOffset = AclOffset + Aces[i]->AceSize;
16 }
17 }

(a) CVE-2021-31979 [47], a heap overflow bug example in the Windows
kernel, especially RtlpCreateServerAcl of ntoskrnl.exe.

1 function symRule (node) {
2 if (isCall(node,"ExAllocatePoolWithTag")
3 && node.args[1].type.size == 2
4 && !isConstant(node.args[1])) {
5 setCallback(node, function(node, state) {
6 var addr = state.getValue(node);
7 var size = state.getValue(node.args[1]);
8 if (state.allocs == undefined) state.allocs = [];
9 state.allocs.push({addr: addr, size: size, node: node});

10 }, "malloc");
11 }
12

13 if (isCall(node, "memcpy")) {
14 setCallback(node, function(node, state) {
15 var dst = state.getValue(node.args[0]);
16 var size = state.getValue(node.args[2]);
17 for (var alloc of state.allocs) {
18 if (dst.includes(alloc.addr)
19 && state.isSAT(alloc.size < size)) {
20 print("Overflow detected");
21 }
22 }
23 }, "memcpy");
24 }
25 addDependency("malloc", "memcpy");
26 }
27

28 for (func in prog.functions)
29 symExec(func, symRule);

(b) A query for finding heap overflow bugs.

1 NTSTATUS __fastcall NtfsSetDispositionInfo(...) {
2 ...
3 length = volumeName->Length + dirName->Length
4 + fileName->Length;
5 path.Length = 0;
6 path.MaximumLength = length + 2;
7 path.Buffer = (PWSTR)ExAllocatePoolWithTag(
8 (POOL_TYPE)(PoolType | 0x10),
9 (unsigned __int16)(length + 2),

10 ’FFtN’);
11 RtlAppendUnicodeStringToString(&path, volumeName);
12 ...
13 memcpy(
14 (char *)path.Buffer + path.Length,
15 dirName->Buffer,
16 dirName->Length);
17 ...
18 }

(c) CVE-2021-41378, one of the heap overflow bugs found by QUERYX.

Writing query

Executing query

Figure 3: A running example of QUERYX for heap overflow bugs.

4

Binary

Query

Result

DECOMPILER

LIFTER

ANALYZER

Syntactic Matching

Data-flow Analysis

Symbolic Analysis

QUERY INTERPRETER

QUERYX

Decompiled Code

DNR

Analysis ResultAnalysis Rule

Figure 4: QUERYX Architecture.

This query starts under-constrained symbolic execution from
all function entries in the program, based on the symbolic
rule specified by symRule (Line 28–29). To verify the first
property, the query sets a callback to the nodes that call
ExAllocatePoolWithTag if its size argument is a 2-byte
type and not constant (Line 2–4). The callback obtains the
allocated memory and its size and then stores them in the
symbolic state (Line 5–10). In addition, this query registers a
callback for every node that calls memcpy. In Line 17–22, the
callback reports a heap overflow if the destination address of
the memcpy arguments includes the allocated address and the
copy size of memcpy is greater than the size of the allocated
address, which is true for the second and third properties.
Notably, this query sets a dependency between malloc and
memcpy callbacks (Line 25). This allows QUERYX to reduce
the CFG for more scalable analysis, which is described in
§5.2.

Finally, we applied the query shown in Figure 3b to the
Windows kernel and found 7 unique bugs. Figure 3c describes
one of the discovered heap overflow bugs with the simplified
decompiled code of NtfsSetDispositionInfo. In summary,
this function allocates a new memory region to create a
full path by concatenating its volume, directory, and file
names. Notably, this function additionally has the following
properties: the allocation size of ExAllocatePoolWithTag is
a 2-byte integer type and the copy size of memcpy can be
greater than the allocation size of the destination buffer due
to integer overflow. Therefore, QUERYX discovered this bug,
which leads to a heap overflow, based on the query.

3.2. Architecture

Figure 4 depicts the architecture of QUERYX. At a
high level, QUERYX produces analysis results by analyz-
ing a given binary code based on a query written by
analysts. To accomplish this, QUERYX consists of four
major modules: DECOMPILER, LIFTER, ANALYZER, and
QUERY INTERPRETER. The DECOMPILER module first de-

compiles the binary code using the existing binary de-
compiler, IDA Hex-Rays [28]. And the LIFTER module
transforms the decompiled code into our IR called DNR for
the ANALYZER module. Lastly, the QUERY INTERPRETER
module evaluates the given query, instructs ANALYZER on
which analysis to perform, and receives the analysis results.
LIFTER. This module transforms the decompiled code into
DNR. For precise analysis, QUERYX considers binary-
dependent code (e.g., offset-based memory access), binary-
embedded data (e.g., global variables), and decompiled-
induced code (e.g., LOBYTE macro in IDA Hex-Rays).
To simplify this complicated information, we design our IR
named DNR and convert the decompiled code into DNR. We
also maintain a record of which AST node in the decompiled
code is converted into which IR to facilitate the analysis
on the AST. This lifting only uses decompiled code as its
input, thereby making QUERYX available even with the
closed-source decompiler, IDA Hex-Rays (see §4).
ANALYZER. The ANALYZER module takes DNR from the
LIFTER module, decompiled code, and analysis rules, which
are specified in the given query, and returns the analysis result.
This module supports three analysis techniques: syntactic
matching, data-flow analysis, and symbolic analysis. As with
existing tools (e.g., CodeQL and joern), the syntactic match-
ing is performed by traversing the AST of the decompiled
code based on the given query. The data-flow analysis is
performed by specifying the source and destination nodes
and checking whether flow exists between them. In the
case of symbolic analysis, the query checks or changes
symbolic states by adding callbacks to AST nodes that the
analysts want to check or change. This symbolic analysis
is inherently equipped with under-constrained symbolic
execution and CFG reduction, making the analysis scalable
(see §5). Notably, in this paper, we focus on symbolic
analysis, which is the most interesting part of QUERYX.
QUERY INTERPRETER. This module parses and executes
a given query by interacting with the ANALYZER module.
The query specifies which and how the analysis will be used
by the ANALYZER module and retrieves the analysis results.
And the QUERY INTERPRETER module offers JavaScript-
like language to alleviate the learning curve associated with
query writing. To make this step intuitive, this module enables
analysts to write a query based on the AST of the decompiled
code. This module also provides several handy interfaces
for analysis; e.g., this allows checking AST types and value
types of AST expressions for callback registration.

4. Decompiler-Neutral Representation (DNR)

Although decompiled code contains high-level infor-
mation and is intuitive to analysts, the AST of decom-
piled code is inconvenient for implementing analysis, as
discussed in §2.2. Therefore, we design an analyzer-friendly
and decompiler-neutral representation, named DNR. This
simplifies the analysis of QUERYX while preserving the high-
level information of the decompiled code. In this section,
we describe the structure of DNR and the process of lifting
DNR from the decompiled code.

5

4.1. DNR Structure

DNR expresses a program as a set of functions and
program data, which includes binary-embedded data such
as global variables (see §A). A function consists of a
name, an offset in which the function is located in the
program, arguments, and a body. The body is a sequence
of basic blocks, each of which is composed of statements.
Similar to other IRs, DNR statements represent standalone
units of executions, such as variable definitions, memory
allocations, stores, and control flow changes, whereas DNR
expressions represent values. DNR has three characteristics
for preserving the high-level information of decompiled code
and semantics of the program: metadata, program address,
and program data.
Metadata. Many IRs have their metadata, which is extra
information related to the corresponding IR, such as branch
type information, analysis results, and a hash value for
hash-consing [9, 31, 56]. Similarly, all DNR expressions
can have two types of metadata: expression information
(ExprInfo) and AST information (AstInfo). ExprInfo has
expression-specific information, such as a hash value for hash-
consing, and AstInfo points to which AST node is lifted to
the corresponding expression. Notably, the expression AST
node contains high-level information of decompiled code,
such as syntactic information (e.g., a kind of AST node,
children nodes, a parent node, and location) and value types.
Therefore, our symbolic analysis allows analysts to specify
symbolic rules based on the AST of decompiled code using
the AST information in metadata, as explained in §5.1.
Program Address. Global variables in the decompiled
code have names (e.g., dword_2010A4) and locations (e.g.,
0x2010A4). If the binary code is compiled as a position-
independent code, which is common for achieving Address
Space Layout Randomization (ASLR), their locations should
be distinguished from absolute addresses. We thus explicitly
express their locations, which are offsets from the base ad-
dress of the program, by employing ProgramAddr. For exam-
ple, QUERYX lifts reading the global variable, dword_2010A4
in Figure 2, into Load(ProgramAddr(0x2010A4),4).
Program Data. Decompiled code includes code that
accesses program data such as global variables. To fully
express the semantics of accessing program data, QUERYX
divides all program data into sections and records their ranges,
permissions, and initial values. This information is used to
properly handle memory accesses in QUERYX. Additionally,
QUERYX considers the relocation of the program data. This
is crucial for correctly capturing the runtime semantics of a
particular value. For example, while the value of a certain
location was just 0x1234, its actual value during the runtime
could be ProgramAddr(0x1234) due to the relocation.

4.2. DNR Lifting

The major parts of lifting decompiled code into DNR
are similar to lifting the source code into ordinary IR (e.g.,
LLVM IR). However, QUERYX considers several issues to
preserve the semantics of the program.

Local Variables. In decompiled code, local variables are
stored in either stacks or registers, and their locations can
affect the semantics of the decompiled code, as discussed
in §2.2. Lifting local variables in registers into variables of
DNR is straightforward; we use a dedicated variable for
each register. For local variables in stacks, we obtain their
stack offsets from the decompiler. Then, we calculate the
total stack size from this information and allocate the stack
with an Alloc statement. Finally, we convert accessing local
variables in the stack into memory operations (i.e., Store
and Load) with the allocated stack and the corresponding
stack offsets.
Array Variables. Decompiled code has diverse types
of variables, such as an integer, a pointer, and an array.
Particularly, an array-type variable indicates the address
where its elements are stored. Therefore, we lift array-type
variables into the addresses where they point to. For exam-
ple, QUERYX lifts unk_0x1234 into ProgramAddr(0x1234)
if unk_0x1234 is an array and lifts dword_0x5678 into
Load(ProgramAddr(0x5678),4) if dword_0x5678 is not an
array, such as DWORD.
Decompiled-induced Code. To simplify the decompiled
code, the decompiler uses macros that have the same
semantics as that of the original code without explicitly
defining these macros. We refer to such macros as decompiler-
induced code. This simplification can be intuitive for analysts
but not for analyzers because of its implicitness. Therefore,
we resolve macros into statements or expressions of DNR
while preserving their semantics. For example, LOBYTE(X) in
Figure 2, which returns the lowest byte of value X, is lifted as
Extract(X,0,1). This implies extracting 1 byte from the 0
index of X. For now, we support macros related to extracting
values, such as LOBYTE, LOWORD, LODWORD, HIBYTE, HIWORD,
HIDWORD, BYTE1–15, WORD1–7, and DWORD1–3.

5. Design

In this section, we present the design of QUERYX about
how QUERYX performs symbolic analysis on DNR with
queries based on decompiled code (§5.1), CFG reduction
by callbacks and their dependencies for the scalability of
symbolic analysis (§5.2), and other details of symbolic
analysis (§5.3).

5.1. Symbolic Analysis

Under-constrained Symbolic Analysis. For the scalability,
QUERYX begins the symbolic analysis from function entries
instead of the program entry as under-constrained symbolic
execution of UC-KLEE [52]. In particular, QUERYX ana-
lyzes functions with unknown (i.e., under-constrained) values;
QUERYX treats function arguments or memory values as
unknown values if they cannot be determined during analysis.
Despite this limited environment, under-constrained symbolic
analysis can produce meaningful results from the relation-
ships between unknown values (e.g., unknownX > unknownY)
or constant expressions (e.g., unknownZ > 256).

6

Binary-aware Analysis. QUERYX employs binary-aware
analysis to ensure precise analysis. First, QUERYX reflects
the binary runtime environment in symbolic memory. More
specifically, QUERYX divides the memory into three regions:
stack, program data, and an unknown region. Similar to
machine memory, QUERYX uses a flat array to represent
the stack for each function. Then, QUERYX arranges the
variables according to their layout, as we described in §4.2.
QUERYX defines the program data region as a single flat
array and loads values lazily from the binary. And QUERYX
uses unknown regions to represent unknown objects in under-
constrained symbolic analysis. Similar to UC-KLEE [52],
QUERYX assumes that unknown references point to unique
objects due to the absence of aliasing information. Second,
QUERYX deals with memory access differently according to
their permissions in the binary code. When QUERYX reads
a value from a global variable, QUERYX uses an unknown
value for writable memory, but a corresponding initial value
is used for read-only memory.
Callback-based Analysis. QUERYX suggests callback-
based analysis to achieve intuitive query writing; analysts
can register a callback for an AST node to control symbolic
analysis while accompanying the execution flows of the
target program. To implement this, when QUERYX completes
symbolically executing a DNR expression, QUERYX checks
whether the AST node in the metadata of the DNR expres-
sion contains callbacks. If the callback is present, QUERYX
invokes the callback based on the current symbolic state.

5.2. CFG Reduction

Despite performing under-constrained symbolic analysis,
QUERYX still suffers from the scalability issue when an-
alyzing large COTS binaries (e.g., Windows kernel). To
overcome this issue, QUERYX reduces its CFG before
starting the symbolic analysis. Thanks to our callback-based
query model, CFG can easily be reduced by checking for the
presence of callbacks. Additionally, QUERYX allows analysts
to define ordering dependencies between callbacks. These are
straightforward to define (e.g., a few lines) and offer more
opportunities for CFG reduction. Notably, such ordering
dependencies are natural in discovering vulnerabilities. For
example, to discover heap overflow, we must analyze paths
that contain ordering dependencies between the memory
allocation (e.g., malloc) and the memory copy (e.g., memcpy).

Algorithm 1 illustrates the pseudocode for CFG reduction
of QUERYX. The reduceCFG function takes a CFG denoted
as G, and a set of ordering dependencies specified by the
query, which is denoted as D. Then, this function outputs
the reduced CFG. At a high level, the reduceCFG function
removes nodes and edges that are irrelevant to callbacks by
calling reduceByCallback, then trims the reduced CFG by
ordering dependencies.
CFG Reduction by Callbacks. In Line 16 of Algorithm 1,
the reduceByCallback function deletes the nodes and edges
that are disconnected from nodes with callbacks. This func-
tion first obtains a set of the entry node (Nentry) and collects

Algorithm 1: CFG Reduction
Input :A function CFG, G

A set of ordering dependencies, D
Output :A reduced CFG

1 function reduceByCallback(G)
2 Nentry ← getEntryNode(G)
3 Ncb ← filterNodes(G, hasCallback)
4 return getSubCFG(G, Nentry , Ncb)

5 function reduceByDependency(G, d)
6 G′ ← Gempty

7 Ncur ← getEntryNode(G)
8 for i← 0 to d.Length do
9 Nnxt ← getCallbackNodes(G, d[i])

10 Gsub ← getSubCFG(G, Ncur , Nnxt)
11 if Gsub = Gempty then return Gempty

12 G′ ← mergeCFG(G′, Gsub)
13 Ncur ← Nnxt

14 return G′

15 function reduceCFG(G, D)
16 G← reduceByCallback(G)
17 G′ ← Gempty

18 for d ∈ D do
19 Gtmp ← reduceByDependency(G, d)
20 G′ ← mergeCFG(G′, Gtmp)

21 return G′

① entry

② callbackA

③

④ callbackA

⑤ callbackB

(a) CFG reduction by callbacks.

① entry

② callbackA

③

④ callbackA

⑤ callbackB

(b) CFG reduction by dependencies.

Figure 5: An example of CFG reduction where there is an ordering
dependency that callbackB must be called after callbackA.

nodes with callbacks (Ncb). This function then calculates
and returns the sub-CFG that starts at the nodes in Nentry

and ends at the nodes in Ncb. For example, node 3 in
Figure 5a is removed because no callback is present after
this node. The nodes without callbacks are uninteresting so
this reduction effectively eliminates uninteresting paths.
CFG Reduction by Dependencies. reduceByDependency
takes a CFG denoted as G, and an ordering dependency,
which is a sequence of callback names, denoted as d, and
returns the reduced CFG. This function gets the next nodes
(Nnxt) by the dependency in Line 9 and calculates the sub-
CFG that starts at the nodes in Ncur and ends at the nodes
in Nnxt. The sub-CFG then merges with the resulting CFG,
which is initialized as an empty CFG, unless the sub-CFG
is empty. Next, d is iterated and this process is repeated.
Notably, Ncur in the first iteration includes only the entry
node of G, and Ncur is updated as Nnxt after merging the
CFGs. Finally, this function returns the reduced CFG, which
has no nodes or edges that do not satisfy the dependency.
For instance, if the query specifies that callbackB precedes
callbackA, node 2 in Figure 5b is removed because no
node after node 2 has callbackB.

7

Idx CVE Program Function Bug Type Impact Bounty

1 CVE-2021-41370 ntfs.sys NtfsSetShortNameInfo Heap overflow Elevation of Privilege $20,000
2 CVE-2021-41378 ntfs.sys NtfsSetDispositionInfo Heap overflow Remote Code Execution $20,000
3 CVE-2021-43229 ntfs.sys TxfAllocateAndStoreNameForTxfLogging Heap overflow Elevation of Privilege $20,000
4 CVE-2021-43230 ntfs.sys TxfAllocateFullFilePathForChangeNotify Heap overflow Elevation of Privilege $20,000
5 CVE-2021-43231 ntfs.sys NtfsRenameToPrivateDir Heap overflow Elevation of Privilege $20,000
6 CVE-2021-41367 ntfs.sys TxfOpenFileProcessing Heap overflow Elevation of Privilege $20,000
7 CVE-2022-23293 fastfat.sys FatSetFullNameInFcb Heap overflow Elevation of Privilege $20,000
8 CVE-2022-30162 win32kfull.sys NtUserSetClassLongPtr Kernel Address Disclosure Information Disclosure -
9 CVE-2020-17041 PrintConfig.dll CopyFileFromPrinterData Path Traversal Elevation of Privilege $20,000
10 CVE-2020-17042 PrintConfig.dll UniDrvUI::PConcatFilename Path Traversal Remote Code Execution $20,000
11 – 15 - Automotive REDACTED Out-of-bound Access Elevation of Privilege -

TABLE 2: Unique bugs found by QUERYX.

Query QUERYX angr joern

Heap Overflow 38 267 12
Kernel Address Disclosure 65 233 10
Path Traversal 74 248 13
OOB Access 113 341 -

TABLE 3: Lines of queries of each tool for four types of bugs.

Alternatives to Path Slicing. For usability, QUERYX
intentionally chose this CFG reduction over path slic-
ing [12, 30, 55], which is a widely used technique for scalable
symbolic execution. If we can specify all the critical points of
a path (i.e., targets), path slicing can outperform the proposed
CFG reduction because path slicing can even eliminate
nodes that are not at the end of the path. Unfortunately,
callbacks are necessary but insufficient to represent the
targets of a path. In QUERYX, analysts can freely use
symbolic states for analysis (e.g., constraints or symbolic
memory). Therefore, any symbolic state access should be
considered as a target in path slicing, which makes path
slicing inefficient due to its large number. One method to
avoid this is to allow analysts to annotate the symbolic state
that they will use. However, we believe that this could impair
the usability of QUERYX. Despite the current CFG reduction,
we showed that QUERYX can be sufficiently scalable to
handle large COTS binaries in §8.3. Therefore, QUERYX
employs this simple yet conservative CFG reduction, instead
of sophisticated path slicing.

5.3. Other Details of Symbolic Analysis

Loop Unrolling. One of the main reasons for the path
explosion in the symbolic analysis is the loop in the program.
To mitigate being stuck within loops, QUERYX limits the
number of iterations in each loop. This is also known as
loop unrolling, and many analyzers [40, 67, 72, 81] have
already employed this. Notably, the maximum number of
iterations is set by a query, and the default number is two.
Inter-procedural Analysis. We support inter-procedural
analysis but limit the maximum depth of function calls to
mitigate the path explosion. Similar to the loop count, this
value is set by a query and the default number is one. This
means that QUERYX performs an intra-procedural analysis
by default. And analysts can explicitly instruct QUERYX to
follow a certain function using state.symExec. In §7.3, we
demonstrate the inter-procedural analysis of QUERYX.

6. Implementation

We have implemented QUERYX with 1.6K lines of
Python code, 40 lines of JavaScript code, and 9.6K lines
of F# code. Specifically, the DECOMPILER module employs
IDA Hex-Rays [28] to decompile binary code and dumps
the decompiled code using 1.6K lines of IDA Python code.
And the QUERY INTERPRETER module is implemented with
2.4K lines of F# code and 40 lines of JavaScript code while it
imports Esprima [29], which is a Node.js library, for parsing
JavaScript-like queries. In the ANALYZER module, we re-
implemented an under-constrained symbolic execution for
DNR (§5.1), which UC-KLEE [52] originally suggested for
LLVM IR, and employed Z3 [48] version 4.8.10 to solve path
constraints. Notably, the LIFTER and ANALYZER modules
consist of 3.0K and 4.2K lines of F# code, respectively.

7. Using QUERYX to Find Bugs

In this section, we apply QUERYX to find several bugs
and show that QUERYX has the following properties.

To demonstrate that QUERYX can find diverse types of
bugs (Expressiveness), we implemented queries for four
types of bugs: heap overflow, kernel address disclosure, path
traversal, and out-of-bound access. Table 3 shows the lines
for each query. In the following subsections, we discuss each
query for finding heap overflow, kernel address disclosure,
and out-of-bound access. We include the query for path
traversal in Appendix §C due to space limits.

To show that QUERYX can discover bugs in binaries with
different architectures (Applicability), we ran the queries
on the Windows kernel and Windows system service, which
are based on x64, and an automotive binary based on ARM.
Table 7 depicts the version, size, and decompilation time
of the target binaries. Note that we used a public symbol
server for Windows binaries and debugging symbols in the
automotive binary to help decompilation.

Finally, we found 15 previously unknown bugs including
10 CVEs, and earned $180,000 in bounty, as shown in Table 2.
These results highlight that QUERYX is effective in finding
bugs in real-world binaries (Effectiveness). And Table 4
shows the detailed results while we considered our findings
as true positives only if we could generate proof-of-concepts
for them. Notably, the time in Table 4 represents the analysis
time without the decompilation time.

8

Query Binary
QUERYX angr joern

Time Total TP FP Time Total TP FP Time Total TP FP

Heap Overflow
ntfs.sys 3.9h 39 6 33 6.5h 39 (26) 3 (3) 36 (23) 2.3h 126 (32) 5 (5) 121 (27)
fastfat.sys 16.6m 6 1 5 20m 6 (4) 1 (1) 6 (3) 27m 30 (6) 1 (1) 29 (5)
win32kfull.sys 1.3m 2 0 2 2m 2 (2) 0 2 (2) 6.1h 5 (2) 0 5 (2)

Kernel Address
Disclosure

ntfs.sys 50s 0 0 0 54m 0 0 0 2.2h 0 0 0
fastfat.sys 13s 0 0 0 3.5m 0 0 0 29m 0 0 0
win32kfull.sys 2.1h 3 1 2 7.5h 2 (2) 1 (1) 1 (1) 6.7h 3 (3) 1 (1) 2 (2)

Path Traversal PrintConfig.dll 1.5m 8 2 6 38m 8 (8) 2 (2) 6 (6) 4.3h 26 (8) 2 (2) 24 (6)

OOB Access Automotive 4.1m 5 5 0 1h 5 (5) 5 (5) 0 - - - -

TP: True positive. FP: False positives. The numbers in the parentheses are the number of cases that QUERYX also found.

TABLE 4: Query results of QUERYX, angr, and joern on the Windows kernel, Windows system service, and an automotive binary.

Experimental Setup. We evaluated QUERYX on a machine
with an AMD Ryzen 3900X (12 cores) and 112GB RAM,
running 64-bit Ubuntu 18.04 LTS. And we used the QUERYX
default configuration: 24 hours for each program’s timeout,
10 min for each function’s timeout, 2 for the maximum loop
iteration, 1 for the maximum depth of function calls.

7.1. Heap Overflow

To find heap overflow bugs, we wrote a query as
described in §3.1. We then applied the query to a part of the
Windows kernel: ntfs.sys, fastfat.sys, and win32kfull.sys.
Result. Table 4 shows that QUERYX found 47 heap overflow
bug candidates in the three binaries: 39 candidates in ntfs.sys,
6 candidates in fastfat.sys, and 2 candidates in win32kfull.sys.
By manual analysis, we concluded 6 bugs and 33 false
positives in ntfs.sys, 1 bug and 5 false positives in fastfat.sys,
and 2 false positives in win32kfull.sys. Table 2 lists heap
overflow bugs found by QUERYX and §3.1 describes one of
them. Furthermore, it took 3.9 hours, 16.6 min, and 1.3 min to
analyze ntfs.sys, fastfat.sys, and win32kfull.sys, respectively.
False Positives. The false positives can be attributed to three
main reasons. (1) QUERYX employs under-constrained sym-
bolic execution, which begins with function entries. QUERYX
assumes that all unknown values, such as function arguments,
can have arbitrary values even though they are not. For exam-
ple, QUERYX reports FormFullImageName in win32kfull.sys
as a heap overflow candidate based on the assumption that
its allocation size can be overflowed. However, we found
that the only caller of the function specifies the size as
constant, thereby making overflow impossible. (2) Due to the
absence of a complete list of exit functions, QUERYX passed
them instead of stopping, thereby resulting in false posi-
tives. For instance, NtfsCacheSharedSecurityBySecurityId
calls an exit function if integer overflow occurs. How-
ever, QUERYX cannot recognize this exit function and
incorrectly concludes that integer overflow is possible. (3)
Finally, QUERYX discovered some bug candidates such as
NtfsProcessRepairVerbIndexEntry that cannot be triggered
in our threat model. This function can only be invoked when
repairing NTFS file systems. Unfortunately, in Windows,
only the administrator can repair file systems. Therefore,
these candidates were non-security bugs and false positives.

7.2. Kernel Address Disclosure

We also implemented a query for finding kernel address
disclosure bugs and evaluated this query on three Windows
kernel binaries, which are the same as in §7.1. Note that such
kernel address disclosure bugs are essential in modern ex-
ploitations to bypass one of the common exploit mitigations,
kernel address space layout randomization (kASLR) [18].
Query. The Windows kernel usually writes values into the
user-space memory to transfer them into user-space. We thus
wrote a query for kernel address disclosure bugs in which
kernel addresses are stored in the user-space memory, as
shown in Figure 6a. At a high level, we collect user-space
and kernel addresses then check whether the kernel addresses
are stored in the memory pointed by the user-space addresses.
We determine user-space addresses based on the fact that the
Windows kernel usually checks whether an address points
to the user-space by calling ProbeForWrite or comparing
it with MmUserProbeAddress before writing a value to the
user-space memory (Line 1–6, 10–15). And we collect all
addresses by checking whether they are pointer types, which
can be kernel or user-space addresses (Line 17–22). Finally,
when an AST node writes a pointer-typed value into a
memory address (e.g., *x = y or x->a = y or x[i] = y),
we conclude this as a kernel address disclosure bug if the
address is a user-space address and the value is a kernel
address (Line 24–34). Notably, isUserAddr(state, addr)
and isPtr(state, addr) return true if addr is one of the
values added by addUserAddr and addPtr, respectively.
Result. After evaluating the query on the three binaries,
QUERYX found 3 kernel address disclosure bug candidates in
only win32kfull.sys. In addition, it took 50s, 13s, and 2.1h to
analyze ntfs.sys, fastfat.sys, and win32kfull.sys, respectively.
ntfs.sys and fastfat.sys took less time and had no bug
candidates because they implement file systems that transfer
values to the user-space less frequently. We determined a
genuine bug and two false positives by manual investigation.

Figure 6b shows the kernel address disclosure bug found
by QUERYX. In summary, ptr is set to &buf, which is a
kernel stack address, in Line 7 and stored in the user-space
memory in Line 13. Specifically, QUERYX with the query
first adds &buf to a set of pointers after executing Line 7.
Next, user_addr is added to a set of user-space addresses

9

1 function isUserAddrSrc(node) {
2 // Returns true if the node is
3 // 1) the first argument of ProbeForWrite,
4 // or 2) compared with MmUserProbeAddress
5 ...
6 }
7

8 // Goal: Find *userAddr = kernelPtr;
9 function symRule(node) {

10 if (isUserAddrSrc(node)) {
11 setCallback(node, function (node, state) {
12 var userAddr = state.getValue(node);
13 addUserAddr(state, userAddr);
14 })
15 }
16

17 if (isPtr(node)) {
18 setCallback(node, function (node, state) {
19 var ptr = state.getValue(node);
20 addPtr(state, ptr);
21 })
22 }
23

24 if (isMemWrite(node) && isPtrType(node.value)) {
25 setCallback(node, function (node, state) {
26 var addr = state.getValue(getMemAddr(node.assignee));
27 var value = state.getValue(node.value);
28 if (isUserAddr(state, addr)
29 && isPtr(state, value)
30 && !isUserAddr(state, value)) {
31 print("Kernel address disclousre detected");
32 }
33 });
34 }
35 } (a) A query for finding kernel address disclosure bugs.

1 _QWORD *__fastcall NtUserSetClassLongPtr(...) {
2 ...
3 __int128 *ptr; // [rsp+48h] [rbp-70h]
4 ULONG64 v26; // [rsp+58h] [rbp-60h]
5 __int128 buf; // [rsp+60h] [rbp-58h]
6 ...
7 ptr = &buf;
8 v8 = xxxSetClassLongPtr(v11, -8, (__int64)&v24, a4);
9 v21 = MmUserProbeAddress;

10 if (user_addr >= MmUserProbeAddress)
11 user_addr = MmUserProbeAddress;
12 *(_OWORD *)user_addr = v24;
13 *(_QWORD *)(user_addr + 16) = ptr;
14 ...
15 }

(b) CVE-2022-30162, a kernel address disclosure bug QUERYX found.

Figure 6: A query for finding kernel address disclosure bugs and
a bug found by QUERYX.

after Line 10. Finally, in Line 13, this code is concluded
as a bug after validating that the memory address for write
is a user-space address and the value for write is a kernel
address (i.e., an address that is not a user-space address).
False Positives. False positives occur from this query for two
specific reasons. First, we tried to determine which address
points to the user-space memory using ProbeForWrite and
MmUserProbeAddress, but this was incomplete. For example,
NtGdiSTROBJ_bEnumInternal has a user-space address de-
fined by another method that we did not notify. Therefore,
the query confused the pointer with a kernel address and
classified this as a bug. Second, we assumed that a pointer
typed value would be an address, but there was an excep-
tion. In NtUserGetClipboardAccessToken, the decompiler
analyzed the output of the ObOpenObjectByPointer function
as a pointer type, but it was actually a handle type. This
broke our assumption and caused a false positive.

7.3. Out-of-Bound Access

In this subsection, we illustrate our query for discovering
out-of-bound (OOB) accesses in an automotive binary. This
example differs from the previous ones in three ways. First,
the automotive binary is based on ARM, not x86, which
demonstrates the applicability of QUERYX. Second, this
binary contains several indirect calls based on virtual func-
tion tables (vtable). Without resolving indirect call targets,
QUERYX cannot perform meaningful analysis. Finally, this
binary supports IPC services based on an Android binder, the
handlers of which have names such as Service::onTransact.
We found that such handlers typically invoke other functions
to process their inputs. Therefore, we need an inter-procedural
analysis instead of an intra-procedural analysis.

Our key idea is to discover OOB accesses by checking
whether free (i.e., unconstrained) inputs are used as memory
addresses. In particular, we first assume that we can fully
control the return values from Android parcel functions
such as android::Parcel::readInt32. Then, we attempted
to find the memory access dependent on such values but not
restricted (e.g., without boundary checks). If such memory
access exists, we conclude that it is OOB access.
Query. A simplified query for finding OOB access is shown
in Figure 7a. QUERYX resolves indirect call targets based
on vtables. In particular, we write a vtable address into the
memory pointed to by this object, as vtable is typically
located at the start of the object (Line 9–16). Then, we add
user-controllable inputs into the symbolic state, which are
the return values of the Android parcel functions (Line 18–
22). For efficient inter-procedural analysis, we analyze the
callee only if one of its arguments has free inputs (Line 24
– 36). Finally, we concluded that they are OOB access bugs
if memory addresses have any free inputs (Line 38–44).
Result. QUERYX took 4.1 minutes to analyze the target bi-
nary and found 5 bug candidates. We manually analyzed them
and confirmed that all of these candidates were bugs. We
believe that this level of precision can be achieved because
this query incorporates extensive domain knowledge (e.g.,
sources of user-controllable values and vtables) and more
in-depth analysis (e.g., inter-procedural analysis). Figure 7b
illustrates one of the found bugs with anonymized names.
Service::onTransact reads values from the IPC message
in Line 7–8 and passes them into the indirect call, which
target is resolved as Serivce::vuln. In Line 16, an input is
used to calculate the memory address for the write without
any checks. Therefore, this leads to an OOB access bug.

8. Evaluation

In this section, we evaluate QUERYX by comparing it
with the state-of-the-art extensible static checking tools, such
as angr, joern, Sys, and CodeQL (§8.1, §8.2) in terms of
query writing and bug findings. Due to the space limit, we
include our evaluation in the dataset from Mantovani et
al [42] in Appendix §E. We also demonstrate how CFG
reduction affects the scalability of QUERYX based on the
existence of callbacks and dependencies (§8.3).

10

1 function hasFreeInput(state, value) {
2 // Return true if value depends on
3 // an input that has no constraint.
4 ...
5 }
6

7 // Goal: Find OOB accesses
8 function symRule (node) {
9 if (isThis(node)) {

10 setCallback(node, function (node, state) {
11 var thisAddr = state.getValue(node);
12 var vtable = getVtable(state);
13 if (vtable != undefined)
14 state.writeMem(thisAddr, vtable, 8);
15 });
16 }
17

18 if (isReadInput(node)) {
19 setCallback(node, function (node, state) {
20 addInput(state, state.getValue(node));
21 });
22 }
23

24 if (isFuncCall(node)) {
25 setCallback(node, function (node, state) {
26 var args = state.getValues(node.args);
27 for (var arg of args) {
28 if (hasFreeInput(state, arg)) {
29 var callee = state.getValue(node.callee);
30 var calleeName = getFuncName(callee);
31 state.symExec(calleeName, symRule, args);
32 return;
33 }
34 }
35 });
36 }
37

38 if (isMemAccess(node)){
39 setCallback(node, function (node, state) {
40 var addr = state.getValue(getMemAddr(node));
41 if (hasFreeInput(state, addr))
42 print("Out-of-bound detected");
43 });
44 }
45 } (a) A query for out-of-bound access bugs.

1 __int64 Service::onTransact(Service *this, ...,
2 const android::Parcel *a3, ...) {
3 ...
4 switch (...) {
5 case 0x40:
6 ...
7 input1 = android::Parcel::readInt32(a3);
8 input2 = android::Parcel::readInt32(a3);
9 // Will be resolved to Service::vuln

10 (*(*(_QWORD *)this + 0x40LL))(this, input1, input2);
11 ...
12 }
13

14 __int64 Service::vuln(Service *this, int a1, int a2) {
15 ...
16 *((_DWORD *)this + a2 + 0x40) = a1;
17 ...
18 } (b) One of the out-of-bound access bugs found by QUERYX.

Figure 7: A query for finding out-of-bound access bugs and one
of the bugs found by QUERYX.

8.1. Comparison against angr and joern

For comparison, we wrote queries for angr and joern
to discover four types of bugs that QUERYX had already
covered in §7. We made every effort to match the query
semantics with those of QUERYX. Note that we used queries
with data-flow analysis for joern because it does not support
a symbolic query. Finally, using the same setup as §7, we
ran angr on binaries and joern on the decompiled code.

vs angr. Theoretically, angr, as a general symbolic analysis
platform, should have capabilities that are similar to those
of QUERYX. However, as shown in Table 4, angr missed
3 true bugs that QUERYX discovered and took 1.6× more
time on average. QUERYX outperformed angr due to two
main reasons: simpler and more intuitive query writing than
that of angr and different memory models.

According to our experience, query writing of QUERYX
is simpler and more intuitive than that of angr. Table 3
shows that QUERYX requires fewer lines of queries than
angr. This is because the decompiled code has analyst-
friendly information and advanced analyses, thereby allowing
QUERYX to employ diverse optimizations. Even with our
efforts, we could not apply the same optimizations to angr
because it involves substantial engineering work.

For example, during kernel address disclosure bug de-
tection, QUERYX uses value types in the decompiled code
to find pointers and enable more aggressive path pruning.
Unfortunately, angr cannot apply this optimization due to
the lack of such information. Moreover, we discovered that
conditional constant propagation in IDA Pro allows QUERYX
to filter out uninteresting cases in advance (e.g., memcpy with
a conditionally constant size) when detecting heap overflow.
In contrast, angr limits such an aggressive analysis because
it aims to accurately represent the semantics of code blocks
from a binary [17]. During OOB detection, we filtered out
local variable writes using the fact that memory writes for
local variables can be easily distinguished in decompiled
code: local variable writes are represented as assignments
rather than dereferences. However, angr requires additional
analysis to achieve that. We thus made angr to monitor every
memory access, which slowed down its analysis.

In addition, QUERYX employs different memory models
from angr. While QUERYX follows the memory models of
UC-KLEE, in which unknown addresses point to unique
objects, angr assumes that they can point to the same object.
As a result, even though it is impossible, angr sometimes
concludes that a write to an unknown address overwrites an
object pointed to by another unknown address. This causes
differences between QUERYX and angr in heap overflow
detection, as shown in Table 4.
vs joern. joern supports data-flow analysis but not symbolic
analysis. We thus wrote queries with data-flow analysis to
find bugs in §7. Notably, joern cannot find OOB bugs because
they require symbolic analysis. During our evaluation, we
found that if joern observes a parsing error and a data-flow
analysis error for a certain function, it skips a group of
functions instead of only the problematic one. This can
lead to unintentional false negatives in joern. Therefore, we
ran queries on each function instead of the entire program
for a fair comparison, and Table 4 shows the results. joern
found all the bug candidates found by QUERYX except 7
heap overflow bug candidates in ntfs.sys. This is due to the
inability of joern to monitor data flows through memory
rather than variables. And due to the absence of symbolic
analysis, joern results in 3.8× more false positives than
QUERYX. This highlights that QUERYX outperforms joern
in leveraging the decompiled code to find bugs.

11

System Time Total TP FP Unknown

QUERYX 53s 35 22 8 5
Sys 40s 15 12 2 1

QUERYX ∩ Sys – 14 12 1 1

TABLE 5: The result of finding heap out-of-bound access bugs in
SQLite by QUERYX and Sys.

8.2. Comparison against Sys

Both QUERYX and Sys [7] are extensible static checking
tools based on symbolic analysis. However, two key differ-
ences exist between them. First, QUERYX can analyze binary
code based on decompiled code, whereas Sys requires a
source code. Second, Sys requires two non-trivial queries for
static and symbolic analyses. Meanwhile, QUERYX requires
only one query, thanks to its fearless design. We showed
these differences with the example of finding heap OOB
access bugs by QUERYX and Sys.
Experimental Setup. To compare QUERYX and Sys, we
used SQLite in Chrome commit 0163ca1bd8da, which the
authors of Sys evaluated in their paper. And we determined
unique bugs by considering that multiple bug candidates can
have the same root cause as the Sys paper. For the remaining
experimental setups, we employed the same setup as in §7.
Query. For Sys, we used the query in the Sys paper, which
is publicly available in its repository [8]. For QUERYX,
we made two changes to the query in Figure 3b. First,
we modified the query to determine memory allocation
functions if function names end with “alloc”. Second, we
added semantics for OOB checks as Sys (e.g., boundary
checks for array accesses). Notably, the queries for QUERYX
and Sys were written in 48 and 335 lines of code, respectively.
This highlights the simplicity of query writing in QUERYX.
Result. Table 5 presents the results of QUERYX and Sys
for finding heap OOB bugs in SQLite. This demonstrates
that QUERYX outperforms Sys in terms of bug detection.
In particular, QUERYX found 10 more true bugs than Sys;
QUERYX found 22 true bugs among 35 candidates while
Sys found 12 bugs among 15 candidates. Notably, Sys
produced fewer false positives because its static analysis
could eliminate potentially erroneous candidates prior to
performing symbolic analysis. QUERYX discovered all bug
candidates that Sys found except for one. This is because
IDA Hex-Rays incorrectly inferred an array expression as
idx[array], rather than as array[idx]. Unlike source code,
such expressions can be ambiguous in a binary.

Appendix §D depicts one of the bugs that QUERYX
uniquely found. The Sys query missed this because it failed
to cover all LLVM IRs even though it was 6× longer than
QUERYX query. This demonstrates that query writing in
QUERYX is simpler and more intuitive than that in Sys.

8.3. Effectiveness of CFG Reduction

To show the effectiveness of CFG reduction, we evalu-
ated three versions of QUERYX: QUERYX, QUERYX with
CFG reduction by only callbacks and no dependencies

Binary
QUERYX QUERYXcb QUERYXno

Time TP Time TP Time TP

ntfs.sys 3.9h 6 7.75h 5 38.4h 5
fastfat.sys 16.6m 1 50m 1 3.1h 1
win32kfull.sys 1.3m 0 2.1h 0 39.5h 0

TABLE 6: The result of finding heap overflow bugs in three Win-
dows kernel binaries by QUERYX, QUERYX with CFG reduction
by only callbacks and no dependencies (QUERYXcb), and QUERYX
without CFG reduction (QUERYXno).

(QUERYXcb), and QUERYX without any CFG reduction
(QUERYXno). We ran them on three Windows kernel binaries
with the heap overflow query in §7.1 because this query
found several bugs and took a long time to analyze, thereby
making it suitable for evaluating the effectiveness of the CFG
reduction. Notably, we employed the same experimental setup
as in §7 except the timeout of each program was unlimited.

Table 6 summarizes the results. Compared with
QUERYXcb and QUERYXno, QUERYX required the least
time for analysis. Specifically, QUERYXcb took 1.5× longer
than QUERYX because QUERYXcb must explore every func-
tion that contains ExAllocatePoolWithTag or memcpy without
considering their dependencies. And QUERYXno took 18.3×
longer than QUERYX because QUERYXno needs to traverse
all nodes in all functions. More interestingly, QUERYX found
one more true bug than QUERYXcb and QUERYXno, as they
reached timeout before finding it. This highlights that CFG
reduction by callbacks and their dependencies is crucial for
the scalability of QUERYX.

9. Discussion
Depending on Decompilers. Decompiled code enables
QUERYX to support closed-source binaries and improve
its usability. However, this forces QUERYX to rely on the
accuracy of decompilers. Compared to lifting to IRs [13, 14,
27, 35], decompilation is more complex and thus error-prone.
For instance, QUERYX failed to discover a bug candidate
in §8.2 due to incorrect type inference of IDA Hex-Rays
(i.e., idx[arr] instead of arr[idx]). We believe that such
issues can be mitigated by advanced type inferences [33] and
semantics-preserving decompilation [54, 74]. Notably, we
employed public symbols for Windows binaries and symbols
in the automotive binary to help decompilation. IDA Hex-
Rays successfully decompiled 99.85% (11,184 / 11,199) of
the functions in three Windows kernel drivers of §7.
Depending on Queries. Similar to other extensible static
checking tools, QUERYX heavily depends on the quality of
its query. If a query is incomplete or too general, QUERYX
may result in many false alarms. In contrast, if analysts
carefully guide the analysis, QUERYX can produce accurate
results. For example, the bug candidates found by QUERYX
in §7.3 were all true positives due to its high-quality query
including vtable resolution and inter-procedural analysis. We
thus made query writing as intuitive as possible: QUERYX
queries are based on decompiled code, which is more analyst-
friendly than IRs, and employs a fearless symbolic analysis,
which reduces the manual efforts for scalability.

12

False Positives. QUERYX has false positives because of its
under-constrained symbolic execution, incomplete queries,
and inaccurate decompilation. Notably, two authors required
three days (24 hours) to manually analyze every case in
§7. This was not too difficult because the false positives
exhibited distinct patterns as previously mentioned. Analysts
can further reduce false positives by encoding additional
rules into queries. For example, to reduce false positives in
§7.1, we first manually figure out some of the functions that
only the administrator can trigger. We then make queries
dismiss them and other functions that can be only triggered
from them. Additionally, advanced decompilation can reduce
false positives due to improper decompilation.
Multi-decompiler Support. Although the current version
of QUERYX only supports IDA Hex-Rays as its back-end
decompiler, we believe that QUERYX can also support mul-
tiple decompilers seamlessly, thanks to DNR in QUERYX.
Particularly, after lifting, QUERYX only uses DNR in the
remaining procedures for analysis. Therefore, QUERYX can
support other decompilers such as Ghidra [50], Binary
Ninja [65], or angr [56] if we implement lifting decompiled
code, which is obtained from other decompilers, into DNR.

10. Related work

Decompilation. For many binary analysts, decompilation is
critical because it supports high-level data such as variable
types and control-flow. Thus, many decompilers have been
proposed, such as IDA Hex-Rays, Ghidra [50], Binary
Ninja [65], Retdec [37], and angr [55, 56]. Moreover,
Phoenix [54] performs semantics-preserving structural anal-
ysis and iterative control-flow structuring to recover high-
level information of binary code. In addition, DREAM [73]
and DREAM++ [75] improve the readability of decompiled
code by several semantics-preserving code transformations.
With the rise of big data, many data- and learning-driven
decompilers [20, 32, 34, 53] also have been proposed. The
current QUERYX is based on IDA Hex-Rays but can employ
other decompilers as we discussed in §9.
Static Analysis for Finding Specific Bugs. Static analysis
is one of the widely used techniques for bug finding [16, 21,
38, 39, 59, 78]. To analyze complex software like kernels
or browsers, there have been static analyzers that focus on
specific types of bugs [2, 40, 51, 60, 67, 69, 77, 79–81]. For
example, KINT [68] detects more than 100 integer overflow
bugs in the kernel. CGSan [26] finds use-after-compacting-
gc bugs in browsers. Wang et al. [66] and Deadline [72]
perform pattern matching and tailored symbolic checking to
detect double-fetch bugs in the kernel, respectively. Moreover,
Brown et al. [6] discover various bugs in browsers by pattern
matching with µcheck [5]. We believe that most of these
patterns can be encoded as queries of QUERYX.
Extensible Static Checking. Extensible static checking
tools have been widely used for writing application-specific
rules for finding bugs [1, 12, 19, 24, 36, 41, 58, 70, 71].
For instance, Clang [36] supports a framework to implement
static analysis on top of its compiler. CodeQL [22] success-

fully finds numerous bugs in real-world software using its
extensible query system. Recently, Sys [7] proposes a two-
step analysis to scale symbolic analysis in large software
such as browsers but requires source code. And joern [76]
supports decompiled code analysis but is not precise due to
the lack of precise parsing and symbolic analysis.
Binary Symbolic Execution. Many binary analysis tools
support symbolic execution because of its usefulness [4, 11,
23, 57]. To manage the complexity of binary code and support
extensibility, these tools mostly rely on IRs. For instance,
angr [55], BAP [9], BINSEC [15], and B2R2 [31] employ
PyVEX [49], BAP Intermediate Language (BIL), Dynamic
Bit-vector Automata (DBA), and LowUIR, respectively.
Unlike these tools, QUERYX’s query is based on decompiled
code, which is more high-level and analyst-friendly than
binary IRs.
Scalable Symbolic Execution. Symbolic execution [10,
10, 23, 25, 56] is one of the most successful techniques
for automatic bug discovery, but it suffers from scalability
issues due to path explosions. There has been much research
regarding path explosions. One common way to mitigate
path explosions is to skip uninteresting paths. For example,
Bergan et al. [3] start symbolic execution from any program
states while approximating states by context-specific data-
flow analysis. And UC-KLEE [52] begins symbolic execution
from function entries with undefined states. Chopper [64]
skips paths that analysts mark as uninteresting while WOOD-
PECKER [12] and Firmalice [55] filter out uninteresting
parts of programs by relationships to events and program
dependency graphs, respectively. Inspired by the above
research, QUERYX employs under-constrained symbolic
execution and CFG reduction to skip uninteresting paths.

11. Conclusion

In this paper, we have presented QUERYX, the first
extensible static checking tool based on decompiled code
for fearless symbolic analysis. QUERYX suggests a new IR,
DNR, for decompiled code and performs binary-aware anal-
ysis to be accurate. For scalability, QUERYX reduces CFG
by callbacks and ordering dependencies between them. We
evaluated QUERYX on the Windows kernel, Windows system
service, and an automotive binary with four queries. As a
result, we found 15 previously unknown bugs including 10
CVEs and received $180,000 from Microsoft as a bug bounty.
We also experimentally demonstrated that CFG reduction
can significantly improve the scalability of QUERYX and
QUERYX outperformed existing extensible static checking
tools in terms of bug findings and query writing.

Acknowledgment

We thank the anonymous reviewers for their helpful
comments and suggestions. This work was supported by
Institute for Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No.2022-0-01202, Regional strategic
industry convergence security core talent training business).

13

References
[1] K. Ashcraft and D. Engler. Using programmer-written compiler

extensions to catch security holes. In Proceedings of the 23rd IEEE
Symposium on Security and Privacy (Oakland), Oakland, CA, May
2002.

[2] J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu. Effective static
analysis of concurrency use-after-free bugs in linux device drivers.
In Proceedings of the 2019 USENIX Annual Technical Conference
(ATC), Renton, WA, July 2019.

[3] T. Bergan, D. Grossman, and L. Ceze. Symbolic execution of multi-
threaded programs from arbitrary program contexts. In Proceedings of
the 25th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), Portland, OR, Oct.
2014.

[4] E. Bounimova, P. Godefroid, and D. Molnar. Billions and billions of
constraints: Whitebox fuzz testing in production. In Proceedings of
the 35th International Conference on Software Engineering (ICSE),
San Francisco, CA, May 2013.

[5] F. Brown, A. Nötzli, and D. Engler. How to build static checking
systems using orders of magnitude less code. In Proceedings of
the 21st ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Atlanta,
GA, Apr. 2016.

[6] F. Brown, S. Narayan, R. S. Wahby, D. Engler, R. Jhala, and D. Stefan.
Finding and preventing bugs in javascript bindings. In Proceedings
of the 38th IEEE Symposium on Security and Privacy (Oakland), San
Jose, CA, May 2017.

[7] F. Brown, D. Stefan, and D. Engler. Sys: A static/symbolic tool for
finding good bugs in good (browser) code. In Proceedings of the 29th
USENIX Security Symposium (Security), Boston, MA, Aug. 2020.

[8] F. Brown, D. Stefan, and D. Engler. Sys: A static/symbolic tool
for finding good bugs in good (browser) code. https://github.com/
PLSysSec/sys, 2020.

[9] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP: A
binary analysis platform. In Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV), Snowbird, UT,
July 2011.

[10] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), San Diego, CA, Dec. 2008.

[11] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing
mayhem on binary code. In Proceedings of the 33rd IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2012.

[12] H. Cui, G. Hu, J. Wu, and J. Yang. Verifying systems rules using
rule-directed symbolic execution. In Proceedings of the 18th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Houston, TX, Mar.
2013.

[13] S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and G. Roşu.
A complete formal semantics of x86-64 user-level instruction set
architecture. In Proceedings of the 2019 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Phoenix,
AZ, June 2019.

[14] S. Dasgupta, S. Dinesh, D. Venkatesh, V. S. Adve, and C. W. Fletcher.
Scalable validation of binary lifters. In Proceedings of the 2020
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), June 2020.

[15] R. David, S. Bardin, T. D. Ta, L. Mounier, J. Feist, M.-L. Potet, and
J.-Y. Marion. BINSEC/SE: A dynamic symbolic execution toolkit for
binary-level analysis. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER). IEEE,
2016.

[16] D. Distefano, M. Fähndrich, F. Logozzo, and P. W. O’Hearn. Scaling
static analyses at facebook. Communications of the ACM, 62(8):62–70,
2019.

[17] A. Dutcher. How to get Vex-IR for an entire function? https://github.
com/angr/pyvex/issues/97#issuecomment-361747627, 2018.

[18] J. Edge. Kernel address space layout randomization. https://lwn.net/
Articles/569635/, 2013.

[19] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules
using system-specific, programmer-written compiler extensions. In
Proceedings of the 4th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), San Diego, CA, Oct. 2000.

[20] C. Fu, H. Chen, H. Liu, X. Chen, Y. Tian, F. Koushanfar, and J. Zhao.
Coda: An end-to-end neural program decompiler. In Proceedings of
the 2019 Advances in Neural Information Processing Systems, Dec.
2019.

[21] D. Gens, S. Schmitt, L. Davi, and A.-R. Sadeghi. K-miner: Uncovering
memory corruption in linux. In Proceedings of the 2018 Annual
Network and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb. 2018.

[22] Github Inc. CodeQL. https://codeql.github.com/, 2006.
[23] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz

testing. In Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2008.

[24] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language
for building system-specific, static analyses. In Proceedings of the
2002 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Berlin, Germany, June 2002.

[25] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowser: a
guided fuzzer to find buffer overflow vulnerabilities. In Proceedings
of the 22th USENIX Security Symposium (Security), Washington, DC,
Aug. 2013.

[26] H. Han, A. Wesie, and B. Pak. Precise and scalable detection of
use-after-compacting-garbage-collection bugs. In Proceedings of the
30th USENIX Security Symposium (Security), Virtual, Aug. 2021.

[27] N. Hasabnis, R. Qiao, and R. Sekar. Checking correctness of
code generator architecture specifications. In Proceedings of the
2015 International Symposium on Code Generation and Optimization
(CGO), San Francisco, CA, Feb. 2015.

[28] Hex-Rays SA. IDA Pro - Hex Rays. https://hex-rays.com/ida-pro/,
2022.

[29] A. Hidayat. Esprima. http://esprima.org/, 2011.
[30] R. Jhala and R. Majumdar. Path slicing. In Proceedings of the 2005

ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Chicago, IL, June 2005.

[31] M. Jung, S. Kim, H. Han, J. Choi, and S. K. Cha. B2R2: Building an
efficient front-end for binary analysis. In Proceedings of the NDSS
Workshop on Binary Analysis Research, 2019.

[32] D. S. Katz, J. Ruchti, and E. Schulte. Using recurrent neural networks
for decompilation. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2018.

[33] O. Katz, R. El-Yaniv, and E. Yahav. Estimating types in binaries using
predictive modeling. In Proceedings of the 43rd ACM Symposium
on Principles of Programming Languages (POPL), St. Peterburg, FL,
Jan. 2016.

[34] O. Katz, Y. Olshaker, Y. Goldberg, and E. Yahav. Towards neural
decompilation. arXiv preprint arXiv:1905.08325, 2019.

[35] S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. K.
Cha. Testing intermediate representations for binary analysis. In
Proceedings of the 32rd IEEE/ACM International Conference on
Automated Software Engineering (ASE), Urbana-Champaign, IL, Oct.
2017.

[36] T. Kremenek. Finding software bugs with the clang static analyzer.
https://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf, 2008.

[37] J. Křoustek, P. Matula, and P. Zemek. Retdec: An open-source machine-
code decompiler, 2017.

[38] D. Larochelle and D. Evans. Statically detecting likely buffer
overflow vulnerabilities. In Proceedings of the 10th USENIX Security

14

https://github.com/PLSysSec/sys
https://github.com/PLSysSec/sys
https://github.com/angr/pyvex/issues/97#issuecomment-361747627
https://github.com/angr/pyvex/issues/97#issuecomment-361747627
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://codeql.github.com/
https://hex-rays.com/ida-pro/
http://esprima.org/
https://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf

Symposium (Security), Washington, DC, Aug. 2001.
[39] J. Lawall and G. Muller. Coccinelle: 10 years of automated evolution

in the linux kernel. In Proceedings of the 2018 USENIX Annual
Technical Conference (ATC), Boston, MA, July 2018.

[40] K. Lu, A. Pakki, and Q. Wu. Detecting missing-check bugs via
semantic- and context-aware criticalness and constraints inferences.
In Proceedings of the 28th USENIX Security Symposium (Security),
Santa Clara, CA, Aug. 2019.

[41] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Chicago, IL, June 2005.

[42] A. Mantovani, L. Compagna, Y. Shoshitaishvili, and D. Balzarotti. The
convergence of source code and binary vulnerability discovery–a case
study. In Proceedings of the 17th ACM Symposium on Information,
Computer and Communications Security (ASIACCS), Nagasaki, Japan,
May–June 2022.

[43] Microsoft. Windows kernel elevation of privilege vulnerability, CVE-
2021-31979. https://msrc.microsoft.com/update-guide/vulnerability/
CVE-2021-31979, 2021.

[44] Microsoft. LOBYTE macro. https://docs.microsoft.com/en-us/
previous-versions/windows/desktop/legacy/ms632658(v=vs.85), 2022.

[45] MITRE. CVE-2019-1477. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2019-1477, 2019.

[46] MITRE. CVE-2020-1081. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2020-1081, 2020.

[47] MITRE. CVE-2021-31979. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-31979, 2021.

[48] L. D. Moura and N. Bjørner. Z3: An efficient SMT solver. In
Proceedings of the 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
Budapest, Hungary, Mar.–Apr. 2008.

[49] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), San Diego, CA, June 2007.

[50] NSA. Ghidra. https://ghidra-sre.org/, 2019.
[51] A. Pakki and K. Lu. Exaggerated error handling hurts! an in-depth

study and context-aware detection. In Proceedings of the 27th ACM
Conference on Computer and Communications Security (CCS), Virtual,
Nov. 2020.

[52] D. A. Ramos and D. Engler. Under-constrained symbolic execution:
Correctness checking for real code. In Proceedings of the 24th USENIX
Security Symposium (Security), Washington, DC, Aug. 2015.

[53] E. Schulte, J. Ruchti, M. Noonan, D. Ciarletta, and A. Loginov.
Evolving exact decompilation. In Workshop on Binary Analysis
Research (BAR), 2018.

[54] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley. Native x86
decompilation using Semantics-Preserving structural analysis and
iterative Control-Flow structuring. In Proceedings of the 22th USENIX
Security Symposium (Security), Washington, DC, Aug. 2013.

[55] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna.
Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware. In Proceedings of the 2015 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2015.

[56] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna.
Sok: (state of) the art of war: Offensive techniques in binary analysis.
In Proceedings of the 37th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2016.

[57] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. Bitblaze: A new
approach to computer security via binary analysis. In International

conference on information systems security, 2008.
[58] A. Srivastava and A. Eustace. Atom: A system for building customized

program analysis tools. In Proceedings of the 1994 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), Orlando, FL, June 1994.

[59] Synopsys Inc. Coverity scan. https://scan.coverity.com/, 2006.
[60] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. Autoises:

Automatically inferring security specification and detecting violations.
In Proceedings of the 17th USENIX Security Symposium (Security),
San Jose, CA, July–Aug. 2008.

[61] The angr team. Optimization considerations. https://github.com/angr/
angr-doc/blob/master/docs/speed.md, 2022.

[62] The Clang team. Clang static analyzer. https://clang-analyzer.llvm.org,
2007.

[63] The cppcheck team. Cppcheck. https://cppcheck.sourceforge.io, 2007.
[64] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar. Chopped sym-

bolic execution. In Proceedings of the 40th International Conference
on Software Engineering (ICSE), Gothenbug, Sweden, May–June
2018.

[65] Vector 35. Binary Ninja. https://binary.ninja/, 2016.
[66] P. Wang, J. Krinke, K. Lu, and G. Li. How double- fetch situations

turn into double-fetch vulnerabilities: A study of double fetches in the
linux kernel. In Proceedings of the 26th USENIX Security Symposium
(Security), Vancouver, Canada, Aug. 2017.

[67] W. Wang, K. Lu, and P.-C. Yew. Check it again: Detecting lacking-
recheck bugs in os kernels. In Proceedings of the 25th ACM Conference
on Computer and Communications Security (CCS), Toronto, ON,
Canada, Oct. 2018.

[68] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek.
Improving integer security for systems with KINT. In Proceedings
of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Hollywood, CA, Oct. 2012.

[69] Q. Wu, A. Pakki, N. Emamdoost, S. McCamant, and K. Lu. Under-
standing and detecting disordered error handling with precise function
pairing. In Proceedings of the 30th USENIX Security Symposium
(Security), Virtual, Aug. 2021.

[70] Y. Xie and A. Aiken. Saturn: A SAT-based tool for bug detection. In
Proceedings of the 17th International Conference on Computer Aided
Verification (CAV), Scotland, UK, July 2005.

[71] Y. Xie and A. Aiken. Scalable error detection using boolean satisfia-
bility. In Proceedings of the 32nd ACM Symposium on Principles of
Programming Languages (POPL), Long Beatch, CA, Jan. 2005.

[72] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim. Precise and Scalable
Detection of Double-Fetch Bugs in OS Kernels. In Proceedings of
the 39th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2018.

[73] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith. No
more gotos: Decompilation using pattern-independent control-flow
structuring and semantic-preserving transformations. In Proceedings of
the 2015 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2015.

[74] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith. No
more gotos: Decompilation using pattern-independent control-flow
structuring and semantic-preserving transformations. In Proceedings of
the 2015 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2015.

[75] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith. Helping
johnny to analyze malware: A usability-optimized decompiler and
malware analysis user study. In Proceedings of the 37th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May
2016.

[76] F. Yamaguchi. Joern – the bug hunter’s workbench. https://joern.io/,
2014.

[77] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck. Chucky:
Exposing missing checks in source code for vulnerability discovery.

15

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31979
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31979
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ms632658(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ms632658(v=vs.85)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1477
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1477
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1081
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1081
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31979
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31979
https://ghidra-sre.org/
https://scan.coverity.com/
https://github.com/angr/angr-doc/blob/master/docs/speed.md
https://github.com/angr/angr-doc/blob/master/docs/speed.md
https://clang-analyzer.llvm.org
https://cppcheck.sourceforge.io
https://binary.ninja/
https://joern.io/

In Proceedings of the 20th ACM Conference on Computer and
Communications Security (CCS), Berlin, Germany, Oct. 2013.

[78] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck. Automatic inference
of search patterns for taint-style vulnerabilities. In Proceedings of the
36th IEEE Symposium on Security and Privacy (Oakland), San Jose,
CA, May 2015.

[79] H. Yan, Y. Sui, S. Chen, and J. Xue. Machine-learning-guided typestate
analysis for static use-after-free detection. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC), 2017.

[80] H. Yan, Y. Sui, S. Chen, and J. Xue. Spatio-temporal context reduction:
A pointer-analysis-based static approach for detecting use-after-free
vulnerabilities. In Proceedings of the 40th International Conference on
Software Engineering (ICSE), Gothenbug, Sweden, May–June 2018.

[81] I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik. APISan: Sanitizing
API Usages through Semantic Cross-checking. In Proceedings of the
25th USENIX Security Symposium (Security), Austin, TX, Aug. 2016.

1 function isChecked(state, src) {
2 return hasCheck(state, src, ’/’)
3 && hasCheck(state, src, ’\\’);
4 }
5

6 // Goal: Find a path without proper validation
7 function symRule(node) {
8 if (isCall(node,"wcsrchr") && isSeparator(node.args[1])) {
9 setCallback(node, function (node, state){

10 var str = state.getValue(node);
11 var sep = state.getValue(node.args[1]);
12 addPath(state, str);
13 addCheck(state, str, sep);
14 })
15 }
16

17 if (isCall(node,"StringCchCatW")) {
18 var src = node.args[2];
19 if (isString(src) && hasSeparator(src)) {
20 setCallback (node, function (node, state) {
21 var dst = state.getValue(node.args[0]);
22 addPath(state, dst);
23 });
24 } else {
25 setCallback (node, function (node, state) {
26 var dst = state.getValue(node.args[0]);
27 var src = state.getValue(node.args[2]);
28 if (isPath(state, src)) addPath(state, dst);
29 if (isPath(state, dst)) addPath(state, src);
30 if (isPath(state, dst) && !isChecked(state, src))
31 print("Path traversal detected");
32 });
33 }
34 }
35 }

(a) A query for finding path traversal bugs.

1 unsigned __int16 *__fastcall UniDrvUI::PConcatFilename(...)
2 {
3 ...
4 tmp = wcsrchr(fileName, ’\\’);
5 if (tmp)
6 fileName = tmp + 1;
7 ...
8 StringCchCatW(path, pathSize, fileName);
9 ...

10 }

(b) CVE-2020-17042, one of the path traversal bugs found by QUERYX.

Figure 8: A query for finding path traversal bugs and one of the
bugs found by QUERYX.

Appendix A.
Structure of DNR

MetaData µ = ExprInfo * AstInfo
Expression exp = Num (value, size, µ)

| Undefined (size, µ)
| ProgramAddr (offset, µ)
| Arg (idx, size, µ)
| Var (name, size, µ)
| TempVar (name, size, µ)
| UnOp (♢u, exp, µ)
| BinOp (♢b, exp, exp, µ)
| RelOp (♢r , exp, exp, µ)
| ITE (exp, exp, exp, µ)
| Load (exp, size, µ)
| Extract (exp, pos, size, µ)
| Cast (♢c, size, exp, µ)
| Call (name, exp [], size, µ)
| IndCall (exp, exp [], size, µ)

Statement stmt = Define (name, exp)
| Alloc (name, size)
| Store (exp, exp)
| Jmp (blockID)
| CondJmp (exp, blockID, blockID)
| Return (exp)

Basic Block block = stmt []
Function func = name * addr * args * block []
Program Data progData = section []
Program prog = func [] * progData

Appendix B.
Information of Target Binaries in §7

Binary Version Size Time

ntfs.sys 10.0.19041.1081 2.8MB 15m
fastfat.sys 10.0.19041.1348 416KB 1m
win32kfull.sys 10.0.19041.1526 3.7MB 15m
PrintConfig.dll 10.0.18362.1198 3.4MB 10m
Automotive REDACTED 6.9MB 56m

TABLE 7: Version, size, and decompilation time of each target
binary in §7

Appendix C.
Finding Path Traversal Bugs

We wrote a query for discovering logic bugs rather than memory corruptions to
demonstrate that QUERYX can handle a variety of bugs. We created a query for the
path traversal bug, which is one of the most famous logic bugs. We were inspired
by previous path traversal bugs in Windows system services for printers: CVE-2019-
1477 [45] and CVE-2020-1081 [46]. We applied the query to PrintConfig.dll, which
is a Windows system service for printers.
Query. Figure 8a shows the query for finding path traversal bugs. This bug is caused
by the absence of checks for whether a user-controllable path can contain directory
separators (‘\’ and ‘/’ in Windows) when constructing a full path. We first identified
which value is a path by simple heuristics instead of relying on a tricky list of path-
related APIs. Particularly, we considered a value as a path if it had a check or was a
string with directory separators (Line 8 – 15 and Line 19 – 24). We then recursively
identified a path if it is used to construct a full path through concatenation (Line 28 –
29). Finally, we concluded the code as a path traversal bug if a path is not checked
with directory separators before concatenation (Line 30 – 31).
Result. QUERYX took 1.5 min to analyze PrintConfig.dll using the query in Figure 8a
and found 8 bug candidates. After manual analysis, we confirmed 2 bugs and 6 false
positives. One of the found bugs, which was assigned to CVE-2020-17042, is shown
in Figure 8b. The vulnerable function only checks whether fileName has ‘\’ and
constructs a path with it. Therefore, we can bypass the check by using ‘/’ instead of
‘\’, and this leads to a path traversal bug.
False Positives. As we described above, the query treats values that contain directory
separators as file paths. However, Windows registry paths also have a separator, ‘\’,
which is identical to one of the directory separators. This causes QUERYX to misjudge
Windows registry paths as file paths, thereby resulting in false positives. For example,
QUERYX reported that a path traversal vulnerability exists in AssembleRegistrySubkey
because it confused Windows registry paths with file paths.

16

QUERYX angr joern CodeQL

Bug Time Total Detected Time Total Detected Detected Detected

CVE-2017-1000249 5s 1 ✓ 3m 1 ✓ ✓ ✓
CVE-2013-6462 30s 1 ✓ 6s 2 ✓ ✓ ✓
BUG-2012 - - × - - × × ×
CVE-2017-6298 4s 1 ✓ 24s 1 ✓ ✓ ✓
CVE-2018-11360 13h 13 ✓ > 24h 303 ✓ × ×
CVE-2017-17760 2.5m 19 ✓ 1.8h 30 ✓ ✓ ×
CVE-2019-19334 40s 1 ✓ 1.1h 1 ✓ ✓ ✓
CVE-2019-1010315 20m 4 ✓ 13m 4 × ✓ ✓
BUG-2010 3s 1 ✓ 12m 2 ✓ × ×
BUG-2018 2.6h 2 ✓ > 24h 18 ✓ ✓ ×

TABLE 8: Results of QUERYX, angr, joern, and CodeQL when targeting 10 bugs selected by Mantovani et al. [42].

Appendix D.
Heap OOB access bug in SQLite Sys missed
but QUERYX found

In §8.2, there were some bugs that QUERYX found but Sys could not, and
Figure 9 depicts one of them. Note that we successfully wrote a proof-of-concept that
triggered this heap OOB bug. In Line 8–11, fts3ContentColumns function calculates
the total length of the column names, nStr. Then, it allocates nStr + 8 * nCol bytes
to azCol and copies the column names into azCol. Due to the lack of an integer
overflow check for the allocation size, this function results in a heap OOB. The Sys
query missed this bug because it failed to cover all LLVM IR instructions in SQLite
even though this query was 6× longer than that of QUERYX. This highlights that
query writing in QUERYX is simpler and more intuitive than that in Sys.

Appendix E.
Comparison against angr, joern, and CodeQL
on the dataset from Mantovani et al.

To compare QUERYX against existing extensible static checking tools on different
targets from §7, we evaluated them on 10 bugs from Mantovani et al. [42]. Note that
Mantovani et al. selected 10 real-world bugs to evaluate the feasibility of applying
source code analysis tools to analyze decompiled code. Although Mantovani’s work
also includes other generic static analysis tools (e.g., CPPCheck [63] or Clang Static
analyzer [62]), we only compared QUERYX against joern and CodeQL. This is because,
as stated in that paper, comparing these tools with generic ones is rather unfair because
they rely on custom queries. As a result, joern and CodeQL outperformed other generic
tools in detecting vulnerabilities during their evaluation.

For comparison, we carefully wrote queries of QUERYX and angr by referring
to bug descriptions and existing queries of joern and CodeQL in Mantovani et al..
This is because extensible static checking tools are highly dependent on their query
qualities. In particular, we attempted to make their queries nearly identical to those
of joern and CodeQL, with the exception that symbolic analysis is more natural. For
example, we symbolically verify that the copy size argument of memcpy is greater than
the buffer size for detecting overflow unlike in the case of joern and CodeQL, which
check the existence of any size check (e.g., a conditional statement with a less than
operator).

We ran QUERYX and angr with queries for 10 bugs in the same configuration as
§7. For joern and CodeQL, we borrowed the results from Mantovani et al.. Notably,
these tools employ distinct analysis objects to detect vulnerabilities (Table 1). QUERYX,
CodeQL, and joern use decompiled code, whereas angr uses VEX IR from binary
code. Additionally, CodeQL assumes that the source code can be compiled because
it is originally designed for source code analysis. As a result, Mantovani et al. had
to manually edit the decompiled code to make it compilable and use it for CodeQL,
which drastically limited the usability of CodeQL for binary code.

Table 8 depicts that QUERYX and angr succeed to find 9 and 8 bugs while
joern and CodeQL found 7 and 5 bugs, respectively. This means that QUERYX can
support diverse types of bugs and targets. QUERYX outperforms joern and CodeQL
because these tools rely on several assumptions from source code, which do not hold
in decompiled code, as noted §5 in Mantovani et al.. For example, joern and CodeQL
missed BUG-2010 because their taint tracking was not binary-aware.

Compared to QUERYX, angr failed to discover one bug and took 2.2× more
time in total. In particular, angr missed CVE-2019-1010315 due to different memory
modeling from that of QUERYX, as we described in §8.1. Furthermore, angr also
returned more false positives than QUERYX when finding CVE-2018-11360; CVE-
2018-11360 is a null-byte overflow in Wireshark due to the lack of boundary checks
when writing a null value into an array. Similar to the queries for joern and CodeQL
from Mantovani et al., QUERYX can determine which memory access is for an array

1 __int64 __fastcall fts3ContentColumns(...) {
2 int n; // [rsp+24h] [rbp-7Ch]
3 int nCol; // [rsp+48h] [rbp-58h]
4 int nStr; // [rsp+4Ch] [rbp-54h]
5 ...
6 nStr = 0;
7 nCol = chrome_sqlite3_column_count(pStmt);
8 for (i = 0; (int)i < nCol; ++i) {
9 zCol = (char *)chrome_sqlite3_column_name(pStmt, i);

10 nStr += strlen(zCol) + 1;
11 }
12 azCol = chrome_sqlite3_malloc((unsigned int)(nStr + 8 * nCol));
13 if (azCol) {
14 p = (char *)(8LL * nCol + azCol);
15 for (j = 0; (int)j < nCol; ++j) {
16 zCol_ = (char *)chrome_sqlite3_column_name(pStmt, j);
17 n = strlen(zCol_) + 1;
18 memcpy(p, zCol_, n);
19 ...
20 }

Figure 9: A heap out-of-bound access bug in SQLite QUERYX
found but Sys did not.

from decompiled code, but angr cannot. Therefore, angr needs to analyze every null-
byte write, thereby resulting in many false positives. Moreover, angr is quite slow
in analyzing extremely large binaries; for example, angr fails to finish analyzing the
vulnerabilities in Wireshark within 24 hours (i.e., CVE-2018-11360 and BUG-2018),
which is a 77MB binary with 2 million lines of code. During this experiment, angr
frequently invoked garbage collection to reclaim memory because angr suffered from
high memory usage. This is a well-known issue of angr [61]. Notably, none of these
tools can detect BUG-2012 because they cannot locate a memory allocation function
in the target, which was invoked by an indirect call. We confirmed that QUERYX can
discover BUG-2012 if we encode this indirect call pattern in the query.

17

	Introduction
	Goals and Approaches
	Analyst-friendly Query
	Precise Analysis on Decompiled Code
	Scalable Analysis with Intuitive Query

	Overview
	Running Example
	Architecture

	Decompiler-Neutral Representation (DNR)
	DNR Structure
	DNR Lifting

	Design
	Symbolic Analysis
	CFG Reduction
	Other Details of Symbolic Analysis

	Implementation
	Using QueryX to Find Bugs
	Heap Overflow
	Kernel Address Disclosure
	Out-of-Bound Access

	Evaluation
	Comparison against angr and joern
	Comparison against Sys
	Effectiveness of CFG Reduction

	Discussion
	Related work
	Conclusion
	Appendix A: Structure of DNR
	Appendix B: Information of Target Binaries in §7
	Appendix C: Finding Path Traversal Bugs
	Appendix D: Heap OOB access bug in SQLite Sys missed but QueryX found
	Appendix E: Comparison against angr, joern, and CodeQL on the dataset from Mantovani et al.

