
BaseComp: 
A Comparative Analysis for Integrity 
Protection in Cellular Baseband Software
Eunsoo Kim*†, Min Woo Baek*†, CheolJun Park†, Dongkwan Kim‡,

Yongdae Kim†, Insu Yun†

†KAIST, ‡Samsung SDS



Baseband Software

Application 
Processor

Baseband 
Processor

Base StationRealtime 
Software

Cellular Network Architecture

2



Baseband 
Processor

Realtime 
Software

Application 
Processor

Malicious 
Base Station

Baseband Software
Attack Scenario

3



Baseband Software

Layer 3 Protocol Message

Security Checker

Message Decoder

Message Dispatcher

Handler A Handler B

Baseband 
Processor

Application 
Processor

Message Processing Logic

4



Baseband Software

• Obscurity 

• Vendors don't release the details


• Large Binary Size 

• The baseband software has to implement 
documents of n*100 pages

Baseband 
Processor

Application 
Processor

Challenges

5



Motivation

• Dynamic Analysis 

• DoLTEst (Security'22), Firmwire (NDSS'22)


• Sends messages and observes responses from real or emulated devices


• Has to restrict the search space leading to missing bugs


• Static Analysis / BaseSpec (NDSS'21) 

• Limited to message decoding and fails to analyze integrity protection


• The vast size and obscurity causes highly resource-consuming manual analysis

6

Existing Approaches



Motivation

• Static Analysis 

• Without having to restrict the search space 

• Comparative Analysis 

• Comparison with specification to uncover bugs in integrity protection 

• Probabilistic Inference 

• Reduce the amount of manual effort needed

7

Our Approach



BaseComp
Overview

Firmware

Specification

Mismatches

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

8



BaseComp

Firmware

Specification

Mismatches

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

9

Probabilistic Inference

Find the integrity protection function.



BaseComp
Probabilistic Inference

Firmware

Specification

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

10

• The integrity protection function needs to have the following logics.


• Encryption/decryption using AES/ZUC/SNOW3G


• Message type filtering based on subclause 4.4.4.2 of TS 24.301

Find the integrity protection function.



BaseComp
Probabilistic Inference

Firmware

Specification

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

11

• The integrity protection function needs to have the following logics.


• Encryption/decryption using AES/ZUC/SNOW3G


• Message type filtering based on subclause 4.4.4.2 of TS 24.301

• Steps


1. Identifying MAC functions.


2. Identifying message type comparing functions.


3. Putting it all together.

Find the integrity protection function.



BaseComp
Probabilistic Inference

1. Identifying MAC functions.

func1

ZUC SNOW3G

func2

<Call Graph> 12

• Cryptographic functions identified by 
magic constants (S-Box)



BaseComp
Probabilistic Inference

1. Identifying MAC functions.

func1

ZUC

• Find common ancestors of 
cryptographic functions

SNOW3G

func1

ZUC SNOW3G

func2

<Call Graph> 13

ZUC SNOW3G

func2



BaseComp
Probabilistic Inference

1. Identifying MAC functions.

func2

func1

func1

ZUC SNOW3G

func2
• Prioritize lower common 

ancestors

<Call Graph> 14



{0x55, 0x44, 0x4B, 0x4E, 0x52, 0x54, 0x46}

BaseComp

2. Identifying message type comparing functions.

Probabilistic Inference

15



{0x55, 0x44, 0x4B, 0x4E, 0x52, 0x54, 0x46}

BaseComp

2. Identifying message type comparing functions.

Probabilistic Inference

{0x55,0x44,0x4B}

{0x41,0x42,0x43,0x44}

{0xDE,0xAD,0xBE,0xEF}

• Iterate every function and its variables

func1

var1

var2

var3

16



BaseComp
Probabilistic Inference

3. Putting it all together.

func1

MAC

func2

func1

message 
type

func1

MAC message 
type

func2
• Prioritize lower common 

ancestors

<Call Graph>

• Find common ancestors of

• MAC function

• Message type comparing 

function

17



BaseComp

Firmware

Specification

Mismatches

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

18

Manual Analysis

Gather additional information to do symbolic execution.



BaseComp

• Additional information about the firmware is required to process symbolic execution

Manual Analysis

19

• Vendor-specific analysis module

• How to symbolize variables

• How to decide if a message is accepted


• Required per-vendor



BaseComp

• Additional information about the firmware is required to process symbolic execution

Manual Analysis

20

• Vendor-specific analysis module

• How to symbolize variables

• How to decide if a message is accepted


• Required per-vendor



BaseComp

• Additional information about the firmware is required to process symbolic execution

Manual Analysis

21

• Vendor-specific analysis module

• How to symbolize variables

• How to decide if a message is accepted


• Required per-vendor



BaseComp
Manual Analysis

22

• Additional information about the firmware is required to process symbolic execution

• Vendor-specific analysis module

• How to symbolize variables

• How to decide if a message is accepted


• Required per-vendor

• Firmware-specific configuration

• Integrity protection function address

• MAC validation function address

• Security state address

• Deny-list of functions to prevent path explosion


• Required per-firmware



BaseComp
Manual Analysis

23

• Additional information about the firmware is required to process symbolic execution

• Vendor-specific analysis module

• How to symbolize variables

• How to decide if a message is accepted


• Required per-vendor

• Firmware-specific configuration

• Integrity protection function address

• MAC validation function address

• Security state address

• Deny-list of functions to prevent path explosion


• Required per-firmware



BaseComp
Manual Analysis

24

• Firmware-specific configuration

• Integrity protection function address

• MAC validation function address

• Security state address

• Deny-list of functions to prevent path explosion


• Required per-firmware

• Additional information about the firmware is required to process symbolic execution

• Vendor-specific analysis module

• How to symbolize variables

• How to decide if a message is accepted


• Required per-vendor



BaseComp

Firmware

Specification

Mismatches

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

25

Symbolic Analysis

Collect constraints from the integrity protection function.



BaseComp
Symbolic Analysis

• Under-constrained symbolic execution on the 
integrity protection function.


• Collect constraints related to the message.

26



BaseComp
Symbolic Analysis

• Under-constrained symbolic execution on the 
integrity protection function.


• Collect constraints related to the message.

27



BaseComp
Symbolic Analysis

sec_state == SECURE

0 < sec_hdr_type <= 3

28

• Under-constrained symbolic execution on the 
integrity protection function.


• Collect constraints related to the message.



BaseComp
Symbolic Analysis

msg_type in {0x55, ... , 0x46}

sec_state == SECURE

0 < sec_hdr_type <= 3

sec_state != SECURE

sec_hdr_type == 0

29

• Under-constrained symbolic execution on the 
integrity protection function.


• Collect constraints related to the message.



BaseComp
Symbolic Analysis

CheckSeq(message) == true && ValidateMac(message) == true

msg_type in {0x55, ... , 0x46}

sec_state == SECURE

0 < sec_hdr_type <= 3

sec_state != SECURE

sec_hdr_type == 0

Message is accepted!
30

• Under-constrained symbolic execution on the 
integrity protection function.


• Collect constraints related to the message.



BaseComp

Firmware

Specification

Mismatches

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

31

Comparative Analysis

Compare the two models and find mismatches.



Evaluation

• Research Questions


1. How well can BaseComp find the integrity protection function?


2. How effectively can BaseComp discover bugs?


• Dataset


• 16 images (10, 5, 1 from Samsung, MediaTek, srsRAN respectively)


• ARM, MIPS(with 16e2 extension), and x86 architecture

Setup

32



Evaluation
How well can BaseComp find the integrity protection function?

33

G950 G955 G960 G965 G970 G975 G977 G991 G996 G998 Pro 7 A31 A31' A03s A145 srsran AVG

Size(MB) 41.2 41.8 41.5 41.6 44.0 44.3 44.3 66.6 66.3 66.3 17.8 22.5 22.5 16.8 17.0 92.9 43.0

Number 
of funcs

64K 61K 74K 74K 92K 75K 92K 103K 108K 103K 48K 94K 94K 65K 65K 96K 82K

Rank 1 1 1 1 1 1 1 3 1 3 2 2 2 2 2 1 1.56

<The rank of the integrity protection function for each firmware>

• Effectiveness



• Summary


• 34 Mismatches


• 29 True Positives


• Classified to 15 types


• 5 False Positives

Evaluation
How effectively can BaseComp discover bugs?

34

Samsung MediaTek srsRAN Total

Mismatches 9 10 15 34

False 
Positives 1 3 1 5

True 
Positives 8 7 14 29



Case Study
NAS AKA Bypass Vulnerability

35

• NAS Authentication and Key Agreement



Case Study
NAS AKA Bypass Vulnerability

36

• NAS Authentication and Key Agreement bypass


• Attach Accept message to connect to malicious 
base station


• Send arbitrary NAS messages in plaintext


• Gather IMEI with Identity Request message


• Modify time with EMM Information message


• ...



Case Study
NAS AKA Bypass Vulnerability

37

sec_state != SECURE

sec_hdr_type != 0

sec_hdr_type > 3

Message is accepted!

(regardless of any other element of the message)

• NAS Authentication and Key Agreement bypass



Case Study
NAS AKA Bypass Vulnerability

38

• Delivering an arbitrary SMS message


• Sender


• 010-1000-1100


• Time


• January 3rd, 2030


• SMS Data


• Hello World!! from 2030



Conclusion

• Proposed a novel semi-automatic approach to analyze the integrity protection. 

• Probabilistic inference + Comparative analysis


• Found 29 bugs from Samsung, MediaTek and srsRAN images. 

• Including critical NAS AKA bypass vulnerabilities.

39



Thank You!

40


