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Baseband Software

• Obscurity 

• Vendors don't release the details


• Large Binary Size 

• The baseband software has to implement 
documents of n*100 pages

Baseband 
Processor

Application 
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Challenges
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Motivation

• Dynamic Analysis 

• DoLTEst (Security'22), Firmwire (NDSS'22)


• Sends messages and observes responses from real or emulated devices


• Has to restrict the search space leading to missing bugs


• Static Analysis / BaseSpec (NDSS'21) 

• Limited to message decoding and fails to analyze integrity protection


• The vast size and obscurity causes highly resource-consuming manual analysis

6

Existing Approaches



Motivation

• Static Analysis 

• Without having to restrict the search space 

• Comparative Analysis 

• Comparison with specification to uncover bugs in integrity protection 

• Probabilistic Inference 

• Reduce the amount of manual effort needed
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Our Approach
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Probabilistic Inference

Find the integrity protection function.
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• The integrity protection function needs to have the following logics.


• Encryption/decryption using AES/ZUC/SNOW3G


• Message type filtering based on subclause 4.4.4.2 of TS 24.301

Find the integrity protection function.
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• The integrity protection function needs to have the following logics.


• Encryption/decryption using AES/ZUC/SNOW3G


• Message type filtering based on subclause 4.4.4.2 of TS 24.301

• Steps


1. Identifying MAC functions.


2. Identifying message type comparing functions.


3. Putting it all together.

Find the integrity protection function.
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• Cryptographic functions identified by 
magic constants (S-Box)
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1. Identifying MAC functions.
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1. Identifying MAC functions.
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{0x55, 0x44, 0x4B, 0x4E, 0x52, 0x54, 0x46}

BaseComp

2. Identifying message type comparing functions.

Probabilistic Inference
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{0x55, 0x44, 0x4B, 0x4E, 0x52, 0x54, 0x46}

BaseComp

2. Identifying message type comparing functions.

Probabilistic Inference

{0x55,0x44,0x4B}

{0x41,0x42,0x43,0x44}

{0xDE,0xAD,0xBE,0xEF}

• Iterate every function and its variables
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BaseComp
Probabilistic Inference

3. Putting it all together.
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Manual Analysis

Gather additional information to do symbolic execution.



BaseComp

• Additional information about the firmware is required to process symbolic execution

Manual Analysis
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• Vendor-specific analysis module

• How to symbolize variables

• How to decide if a message is accepted


• Required per-vendor
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• Additional information about the firmware is required to process symbolic execution

• Vendor-specific analysis module

• How to symbolize variables

• How to decide if a message is accepted


• Required per-vendor

• Firmware-specific configuration

• Integrity protection function address

• MAC validation function address

• Security state address

• Deny-list of functions to prevent path explosion


• Required per-firmware
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• Firmware-specific configuration

• Integrity protection function address

• MAC validation function address

• Security state address

• Deny-list of functions to prevent path explosion


• Required per-firmware
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Symbolic Analysis

Collect constraints from the integrity protection function.



BaseComp
Symbolic Analysis

• Under-constrained symbolic execution on the 
integrity protection function.


• Collect constraints related to the message.
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Symbolic Analysis

• Under-constrained symbolic execution on the 
integrity protection function.


• Collect constraints related to the message.
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BaseComp
Symbolic Analysis

sec_state == SECURE

0 < sec_hdr_type <= 3
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• Under-constrained symbolic execution on the 
integrity protection function.


• Collect constraints related to the message.



BaseComp
Symbolic Analysis

msg_type in {0x55, ... , 0x46}

sec_state == SECURE

0 < sec_hdr_type <= 3

sec_state != SECURE

sec_hdr_type == 0
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• Under-constrained symbolic execution on the 
integrity protection function.


• Collect constraints related to the message.



BaseComp
Symbolic Analysis

CheckSeq(message) == true && ValidateMac(message) == true

msg_type in {0x55, ... , 0x46}

sec_state == SECURE

0 < sec_hdr_type <= 3

sec_state != SECURE

sec_hdr_type == 0

Message is accepted!
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• Under-constrained symbolic execution on the 
integrity protection function.


• Collect constraints related to the message.
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Comparative Analysis

Compare the two models and find mismatches.



Evaluation

• Research Questions


1. How well can BaseComp find the integrity protection function?


2. How effectively can BaseComp discover bugs?


• Dataset


• 16 images (10, 5, 1 from Samsung, MediaTek, srsRAN respectively)


• ARM, MIPS(with 16e2 extension), and x86 architecture

Setup
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Evaluation
How well can BaseComp find the integrity protection function?
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G950 G955 G960 G965 G970 G975 G977 G991 G996 G998 Pro 7 A31 A31' A03s A145 srsran AVG

Size(MB) 41.2 41.8 41.5 41.6 44.0 44.3 44.3 66.6 66.3 66.3 17.8 22.5 22.5 16.8 17.0 92.9 43.0

Number 
of funcs

64K 61K 74K 74K 92K 75K 92K 103K 108K 103K 48K 94K 94K 65K 65K 96K 82K

Rank 1 1 1 1 1 1 1 3 1 3 2 2 2 2 2 1 1.56

<The rank of the integrity protection function for each firmware>

• Effectiveness



• Summary


• 34 Mismatches


• 29 True Positives


• Classified to 15 types


• 5 False Positives

Evaluation
How effectively can BaseComp discover bugs?
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Samsung MediaTek srsRAN Total

Mismatches 9 10 15 34

False 
Positives 1 3 1 5

True 
Positives 8 7 14 29



Case Study
NAS AKA Bypass Vulnerability
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• NAS Authentication and Key Agreement
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• NAS Authentication and Key Agreement bypass


• Attach Accept message to connect to malicious 
base station


• Send arbitrary NAS messages in plaintext


• Gather IMEI with Identity Request message


• Modify time with EMM Information message


• ...



Case Study
NAS AKA Bypass Vulnerability
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sec_state != SECURE

sec_hdr_type != 0

sec_hdr_type > 3

Message is accepted!

(regardless of any other element of the message)

• NAS Authentication and Key Agreement bypass



Case Study
NAS AKA Bypass Vulnerability
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• Delivering an arbitrary SMS message


• Sender


• 010-1000-1100


• Time


• January 3rd, 2030


• SMS Data


• Hello World!! from 2030



Conclusion

• Proposed a novel semi-automatic approach to analyze the integrity protection. 

• Probabilistic inference + Comparative analysis


• Found 29 bugs from Samsung, MediaTek and srsRAN images. 

• Including critical NAS AKA bypass vulnerabilities.
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Thank You!
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