
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

BaseComp: A Comparative Analysis for Integrity
Protection in Cellular Baseband Software

Eunsoo Kim, Min Woo Baek, and CheolJun Park, KAIST;
Dongkwan Kim, Samsung SDS; Yongdae Kim and Insu Yun, KAIST

https://www.usenix.org/conference/usenixsecurity23/presentation/kim-eunsoo

BASECOMP: A Comparative Analysis for Integrity Protection
in Cellular Baseband Software

Eunsoo Kim∗

KAIST
Min Woo Baek∗

KAIST
CheolJun Park

KAIST
Dongkwan Kim
Samsung SDS

Yongdae Kim
KAIST

Insu Yun
KAIST

Abstract
Baseband software is an important component in cellu-

lar communication. Unfortunately, it is almost impossible
to implement baseband software correctly due to the com-
plexity and the large volume of cellular specifications. As
a result, dynamic testing has been widely used to discover
implementation bugs in them. However, this approach suffers
from the reachability problem, resulting in many missed bugs.
Recently, BaseSpec proposed a static approach for analyzing
baseband. However, BaseSpec requires heavy manual analysis
and is limited to message decoding, failing to support integrity
protection, the most critical step in mobile communication.

In this paper, we propose a novel, semi-automated approach,
BASECOMP, for analyzing integrity protection. To tame the
complexity of baseband firmware, BASECOMP utilizes prob-
abilistic inference to identify the integrity protection func-
tion. In particular, BASECOMP builds a factor graph from
the firmware based on specifications and discovers the most
probable function for integrity protection. Then, with addi-
tional manual analysis, BASECOMP performs symbolic analy-
sis to validate that its behavior conforms to the specification
and reports any discrepancies. We applied BASECOMP to 16
firmware images from two vendors (Samsung and MediaTek)
in addition to srsRAN, an open-source 4G and 5G software
radio suite. As a result, we discovered 29 bugs, including a
NAS AKA bypass vulnerability in Samsung which was as-
signed critical severity. Moreover, BASECOMP can narrow
down the number of functions to be manually analyzed to 1.56
on average. This can significantly reduce manual efforts for
analysis, the primary limitation of the previous static analysis
approach for baseband.

1 Introduction

Baseband software is critical in smartphones, one of the most
important devices these days, as it enables cellular communi-
cation. Despite its importance, unfortunately, it is extremely

∗These two authors equally contributed.

challenging to implement the baseband software correctly. In
particular, the baseband software should be compliant with
the specification defined by the 3rd Generation Partnership
Project (3GPP) [1]. This specification is written in natural
languages by hand and contains hundreds of pages; therefore,
it is nearly impossible to understand it comprehensively. More
seriously, due to its complexity and volume, inconsistencies
and ambiguities are frequently discovered in these documents.
As a consequence, developers are prone to make errors when
implementing baseband software, leading to serious security
issues such as denial of service or even authentication bypass
[19, 24, 29, 31, 35, 41, 44, 45, 48, 52, 54, 59].

To remedy this issue, researchers have proposed several
approaches to discover implementation bugs in baseband soft-
ware. To tame the complexity of baseband firmware, dynamic
analysis is mainly utilized; it sends messages and observes
responses from real devices [29, 31, 35, 44, 45, 48, 52, 54, 59]
or emulated ones [19, 24, 41] to discover bugs. This dynamic
method is effective in avoiding efforts to understand firmware
details; however, due to the large search space consisting of
cellular messages, it is inevitable to restrict the search space
(e.g., assuming syntactic correctness), leading to missing bugs.
Recently, BaseSpec [33] employs a static approach that com-
bines manual analysis and comparative analysis to discover
implementation bugs. Despite its success, BaseSpec is lim-
ited to analyzing only an early stage of baseband software —
message decoding. As a result, it fails to analyze integrity pro-
tection, which is a core procedure in mobile communication,
being the main target of many previous works [29,30,35,48].
Moreover, it solely relies on human experts to gather data for
its analysis, which requires significant manual effort.

In this paper, we propose BASECOMP, a new static analy-
sis approach for analyzing integrity protection in baseband
software. To support the large and complex baseband soft-
ware, BASECOMP combines probabilistic inference and com-
parative analysis. First, BASECOMP identifies the integrity
protection function using probabilistic inference. In more
detail, BASECOMP builds a factor graph using specification-
driven features and rank functions in baseband firmware to

USENIX Association 32nd USENIX Security Symposium 3547

Core Network

Protocol
Messages

Base Station Cellular Device

Application
Processor

Baseband
Processor

lll O <

Radio
Signals Security

Checker
Message
Decoder

Message
Dispatcher

Handler A

Handler B

Handler C

Layer 3 Protocol MessageLayer 1 RF signal

Message Processing Logic in Baseband

Integrity Verification
Data Decryption

Figure 1: Overall cellular network architecture

discover the most probable function for integrity protection.
Our evaluation shows that this approach is extremely effective;
we discovered the integrity protection function within 1.56
candidates on average. It is worth noting that our technique
is based on specification rather than implementation, mak-
ing it available across multiple models and vendors. Once
the integrity protection function has been identified, we rely
on manual analysis to obtain several data for comparative
analysis; we build a firmware-specific configuration and a
vendor-specific module to support diverse firmware binaries.
Finally, with the given data, BASECOMP performs a com-
parative analysis following the specification. In particular,
BASECOMP symbolically analyzes the integrity protection
function in the firmware to exhaustively examine messages
that can be accepted as plaintext. Then, we compare them with
the specification (TS 24.301 [3]) and discover mismatches.

We applied BASECOMP to 16 firmware binaries from Sam-
sung, MediaTek devices, and srsRAN. As a result, we iden-
tified 34 mismatches in integrity protection, resulting in 29
bugs (8, 7, 14 in Samsung, MediaTek, and srsRAN respec-
tively). In particular, we discovered several vulnerabilities
that can lead to denial of service and information leakage.
More importantly, we discovered a NAS AKA (authentica-
tion and key agreement) bypass vulnerability that affects a
majority of devices that use Samsung baseband. To encourage
further research, we open-source our prototype of BASECOMP
at https://github.com/kaist-hacking/BaseComp.

In summary, this paper makes the following contributions:
• We propose BASECOMP, a novel approach for analyzing

integrity protection in baseband software using probabilistic
inference and comparative analysis.

• We applied BASECOMP to 16 firmware images from two
vendors, Samsung, MediaTek, and srsRAN. As a result,
we discovered 29 bugs, including one NAS AKA bypass
vulnerability. We responsibly disclosed all bugs.

• To foster future research, we open-source our prototype of
BASECOMP at https://github.com/kaist-hacking/
BaseComp.

2 Background

Figure 1 illustrates an overview of the cellular network archi-
tecture and the message processing logic of a cellular baseband
processor. The terminologies can vary according to the gen-
eration of cellular technology, but for the sake of simplicity,
hereafter we use generic terms. Due to the nature of mobile
specification, many acronyms are used, and those used in this

8 7 6 5 4 3 2 1

Security Header Type Protocol Discriminator

Message Authentication Code (MAC)

Sequence Number (SEQ)

Security Header Type (= 0) Protocol Discriminator

Message Type

Information Elements (IEs)

Authentication Header (if protected) Message Payload

(bits)

Figure 2: NAS message structure.

paper are summarized at Appendix A.

2.1 Cellular Network Architecture
Cellular networks primarily consist of three components: cel-
lular devices, base stations, and a core network. Cellular
devices and a core network exchange various cellular protocol
messages through a base station. Each component has a dedi-
cated behavior depending on its current status and received
message, following the cellular specification.

2.2 Baseband Processor and Software
A cellular device, mostly a smartphone, includes two distinct
processors: an application processor and a baseband proces-
sor. The application processor (AP) runs a mobile operating
system such as Android or iOS, and the baseband processor
(BP) manages cellular communication. To satisfy real-time
requirements for processing radio signals and various proto-
col messages, the BP runs a real-time operating system as its
firmware.

Baseband firmware is typically proprietary, and its im-
plementation details are not publicly available. For exam-
ple, among the top three mobile processors — Qualcomm’s
Snapdragon, MediaTek’s Helio, and Samsung’s Exynos [36],
none of these manufacturers publish implementation details
of their products, such as the source code or firmware struc-
tures. As a result, it is common practice to manually analyze
baseband firmware to uncover software bugs or vulnerabili-
ties [7, 16, 23, 24, 33, 61, 66].

2.3 Protocol Messages and Processing Logic
The cellular protocol stack follows the OSI paradigm as other
wired networks do. The radio interface covers layers 1 and 2,
and cellular core procedures are delivered at layer 3. The core
procedures at layer 3 consist of various protocol messages for
mobility/session management, call control, or user authenti-
cation. Among these protocols, Non-Access Stratum (NAS)
is a collection of essential protocols in the communication
between cellular devices and a core network, particularly for
mobility and session management.

While implementation details vary by manufacturer, cel-
lular devices share a common logic for processing protocol

3548 32nd USENIX Security Symposium USENIX Association

https://github.com/kaist-hacking/BaseComp
https://github.com/kaist-hacking/BaseComp
https://github.com/kaist-hacking/BaseComp

Table 1: Possible security header types for downlink messages.
Value Description

0 Plain NAS message, not security protected
1 Integrity protected
2 Integrity protected and ciphered
3 Integrity protected with new EPS security context

Others For special purposes and reserved values

messages, which is illustrated on the right side of Figure 1.
After processing the radio signals, the BP of a cellular device
first checks whether the received message is security protected.
This step, which is called integrity protection, includes veri-
fying the message’s integrity and optionally decrypting the
message. Note that most cellular protocol messages should
be security protected to determine whether they are actually
sent from a legitimate core network. Next, the BP decodes
the message using a pre-defined message structure [2]. It then
performs an appropriate action with respect to each message,
as stated in the specification [3].

2.4 Security Features and Message Structures
To guarantee secure communication between cellular devices
and a core network, cellular protocols employ multiple secu-
rity protection mechanisms such as encryption or integrity
protection. When a cellular device joins a core network, it
selects a protection mechanism for further secure communi-
cation and derives the keys required for protection using a
master key shared priorly. However, it is unavoidable to use
plaintext messages before a secure communication channel is
established. To reduce attack vectors, the cellular specifica-
tion permits only a few messages to be accepted in plaintext,
while forcing all other messages without security protection
to be rejected or discarded [3].

To accommodate this security feature, the structure of a
NAS message is largely divided into two parts, namely an
authentication header followed by a message payload as de-
picted in Figure 2. It is worth noting that messages without
security protection do not have an authentication header. The
authentication header consists of four fields: security header
type, protocol discriminator (PD), message authentication
code (MAC), and sequence number. In particular, the secu-
rity header type represents the protection mechanism that is
applied to the message as listed in Table 1. Therefore, the
security header type of an incoming message is crucial for
baseband firmware in determining whether to perform mes-
sage integrity verification and decryption.

Following that, the message payload is composed of a se-
curity header type, a PD, a message type, and information
elements (IEs). The message payload is essentially a plaintext
NAS message without security protection; thus, its security
header type has a fixed value of 0. Meanwhile, this message
can be encrypted and embedded as payload after the authenti-

 1 2
0 0 0.5
0 1 0.5
1 0
1 1 1 −

0.5
0.51 −

0.51 −
0.5

1 2

Figure 3: A factor graph with three different functions: a positive
relationship, a negative relationship, and a preferable relationship.
Note that we assume that all parametric probability — namely, 𝑝𝑃𝑜𝑠,
𝑝𝑁𝑒𝑔 , and 𝑝𝑃𝑟𝑒𝑓 — are less than 0.5.

cation header.

2.5 Probabilistic Inference
A factor graph is a type of probabilistic graph model. There
are two different types of nodes in the factor graph: a variable
node and a function node. A variable node represents a ran-
dom variable, whereas a function node contains a relationship
between variable nodes that are connected to it. In a factor
graph, edges can only connect a variable node and a function
node, i.e., a factor graph is a bipartite graph [40].

The factor graph can be used for probabilistic inference.
If we have multiple pieces of probabilistic information, we
can build a factor graph to determine the probability of our
consequence. By defining functions, we can represent various
relationships between variable nodes. Figure 3 shows exam-
ples of such various relationships. With a factor graph, we
can represent a positive relationship between nodes (if 𝑥1 is
true, 𝑥2 will be likely true), a negative relationship (if 𝑥1 is
true, 𝑥2 will be likely false), and also a preference relationship
(𝑥2 is more likely to be true than 𝑥1). Then, we can calcu-
late the marginal probability of a consequence using belief
propagation for probabilistic inference [64].

3 Motivations

In this section, we discuss the limitations of existing work that
motivate us to develop BASECOMP.

3.1 Limitations of Dynamic Testing

Motivation. Due to the extremely large volume (dozens of
MBs) and complexity of baseband firmware, dynamic testing
is frequently used in analysis [19, 24, 29, 31, 35, 44, 45, 48,
52, 54, 59]. This approach is effective as it avoids substantial
efforts in understanding firmware; nevertheless, it often relies
on domain-specific knowledge that may not be applicable
in a specific implementation. In particular, to tame a large
search space that comprises diverse messages, dynamic testing
considers only a subset of them or assumes their syntactic
correctness. However, this leads to missing bugs caused by
unconsidered messages or syntactically broken ones (§7.4).

USENIX Association 32nd USENIX Security Symposium 3549

Symbolic Execution

Analyzing Integrity Protection

Specification

Firmware
Main()
If {..}

MismatchesComparative
Analysis
(§5.3)

Manual AnalysisProbabilistic Inference

Implementation Model

Reference Model Specification Analysis

(§5.1)

(§5.3)

(§5.2)

(§5.3)

Firmware/Vendor
-specific Information

Figure 4: Workflow of BASECOMP.

Our approach: Static analysis. To address this issue,
BASECOMP utilizes static analysis, which is always consid-
ered a complementary method for dynamic analysis. However,
as demonstrated by the sparse use of static analysis approaches,
it is non-trivial to apply static analysis to baseband firmware
due to its large volume and obscurity. Still, static analysis is
valuable; BASECOMP could detect 6 types of bugs that dy-
namic testing couldn’t discover (§7.4). In particular, a NAS
AKA bypass vulnerability in Samsung, which BASECOMP
discovers, remained hidden even with many dynamic testing
trials, as this issue could only be triggered with a syntactically
invalid message. This message — a message with non-zero
security header type without authentication header — violates
the syntactic structure defined in the specification (clause
9.1 in [3]). This also leads to Wireshark, a packet analysis
tool, failing to parse such a message. Moreover, in srsRAN,
BASECOMP discovers a NAS AKA bypass vulnerability by
setting the security header type to 4, which represents in-
tegrity protected and ciphered with new EPS security context,
together with a dumb header. According to the specification,
this security header type is only valid for uplink, making it
out-of-scope in many blackbox testing tools [29, 35].

3.2 Limitations of BaseSpec: No Analysis for
Logic Bugs

Motivation. Recently, BaseSpec [33] suggested a static analy-
sis method for message decoding and successfully discovered
multiple functional errors and critical security issues. How-
ever, BaseSpec fails to analyze integrity protection, which was
the main target of many previous works [29,30,35,48]. Even
though memory corruption is extremely powerful and enables
an adversary to obtain full privilege on a baseband processor,
the exploitability is often unreliable and can be mitigated by
a generic defense mechanism. For instance, we found that a
recent Samsung baseband incorporates a stack canary1 to miti-
gate stack overflows, which is one of the key issues uncovered
by BaseSpec. On the contrary, a logical bug is straightfor-
ward to exploit and cannot be prevented by a generic solution.
Due to its significance, many researchers have studied logical
vulnerabilities [19, 29, 31, 35, 48, 52]; however, they are all

1Samsung applied stack canary from Galaxy S21 5G (G991) since its first
release in January 2021.

constrained to a dynamic manner.
Our approach: Specification-driven comparative anal-
ysis. To uncover integrity protection issues in baseband,
BASECOMP performs comparative analysis based on specifi-
cation. Particularly, BASECOMP extracts symbolic constraints
for plaintext messages that are permitted by a baseband’s in-
tegrity protection function. Then, BASECOMP compares the
firmware’s constraints with those extracted from the specifi-
cation in order to discover any inconsistencies. In contrast to
dynamic testing, BASECOMP makes no assumptions such as
message types or syntactic correctness throughout this anal-
ysis. As a result, BASECOMP can discover mismatches in
the integrity protection function without having to reduce the
search space.

3.3 Limitations of Manual Analysis

Motivation. As stated in §2.2, the implementation details of
baseband firmware are not publicly available. Hence, consider-
ing the substantial number of functions contained in baseband
firmware, inquiring for information to scale down the scope
of analysis is highly resource-consuming.
Our approach: Probabilistic inference. Inspired by re-
cent binary analysis work [67, 68], we devise a technique that
locates the integrity protection function in firmware using
probabilistic inference. Specifically, BASECOMP builds a fac-
tor graph according to the mobile specification, TS 24.301 [3],
and discovers the most probable function that implements
integrity protection. With this help, only an average of 1.56
out of 80K functions is needed to be analyzed for comparative
analysis, significantly reducing manual efforts.

4 Overview

4.1 Workflow

Figure 4 illustrates BASECOMP’s workflow. BASECOMP sys-
tematically analyzes the key component of baseband soft-
ware, integrity protection. To investigate integrity protection
in baseband software (§5), we begin with probabilistic in-
ference that locates an integrity protection function in base-
band software (§5.1). Then, we rely on manual analysis to
build a firmware-specific and a vendor-specific model (§5.2).
After that, BASECOMP symbolically analyzes the software
to obtain symbolic constraints for plaintext messages that
are allowed in baseband; this represents an implementation
model (§5.3). Also, BASECOMP constructs a reference model
for integrity protection by analyzing the specification. After
that, BASECOMP compares the two models and reports any
mismatches (§5.3). To identify bugs, we further analyze these
mismatches and conclude their implications.

3550 32nd USENIX Security Symposium USENIX Association

4.2 Scope of This Work
Among the various protocols in the cellular network, we
choose the EPS Mobility Management (EMM) protocol and
its integrity protection as our target. This protocol contains
a variety of messages and is critical to the cellular core net-
work. As the EMM protocol has numerous complicated logic,
including user identification, authentication, message encryp-
tion, and integrity checks, many previous studies analyzed the
protocol as their target [28,29,35,48]. In addition, we support
two of the top three baseband processor vendors, Samsung
and MediaTek [36]. It is worth noting that we cannot sup-
port Qualcomm, the top vendor of baseband firmware, due to
its proprietary architecture, Hexagon; unfortunately, most of
our underlying tools (i.e., IDA pro and angr) do not support
this architecture. To add, we also support srsRAN, a widely
used open-source project that implements 4G and 5G software
radio suites [21].

4.3 Threat Model
We assume an active attacker model on the wireless channel,
the same model that has been widely used in previous cellular
security researches [28, 48, 52, 54]. In this model, an attacker
can drop, intercept, modify, or inject messages between the
base station and the victim. Also, we assume that the crypto-
graphic keys are secure, that is an attacker can only produce
plaintext messages or messages with the wrong MAC. To
perform malicious conduct with these capabilities, an attacker
can operate a fake base station with strong signals [15] or
use SigOver attack [63]. In this work, the attacker will try
to bypass the integrity protection of the EMM protocol and
trigger logical bugs such as denial of service (§3.2).

5 Design

In this section, we discuss BASECOMP’s approach to analyze
integrity protection.

5.1 Probabilistic Inference for Integrity Protec-
tion Function

To analyze the baseband firmware’s integrity protection func-
tion, we need to identify it first. For that, BASECOMP utilizes
probabilistic inference based on specification. According to
the subclause 4.4.4.2 of TS 24.301 [3], integrity protection
should be implemented as follows:

[TS 24.301, Sec.4.4.4.2] Except the messages listed be-
low, no NAS messages shall be processed, unless the net-
work has established secure exchange of NAS messages:
• Identity Request if Identity Type is IMSI
• Authentication Request,
Authentication Reject, and Detach Accept

• Attach Reject, Tracking Area Update Reject,
Service Reject if the EMM cause is not #25

Once the secure exchange has been established, the UE
shall not process any NAS signaling messages unless they
have been successfully integrity checked.

Following this specification, BASECOMP takes three steps
in discovering the integrity protection function. Figure 5
shows an example of these steps — how BASECOMP con-
structs a factor graph for a given call graph. Note that each
step is denoted by a grey box with a related label.
Step 1: Identifying MAC functions. To discover MAC val-
idating functions, BASECOMP relies on the fact that mobile
networks can authenticate messages using multiple algorithms,
including ZUC and SNOW3G [4, 5]. To discover functions
that implement these algorithms, we leverage a standard tech-
nique for cryptographic function identification [10,22,25]; we
use magic constants (e.g., S-Box) to identify these functions.
In Figure 5, the nodes written in ZUC and SNOW 3G indicate
these functions. For Mediatek firmware, we utilize debug
symbols to identify cryptographic functions as its encryption
is processed by a custom hardware feature.

The next step is to identify a MAC validating function. The
MAC validating function is probably one of the common an-
cestors of these cryptographic functions; however, it is unclear
which is the right one. Instead of making a hasty conclusion,
we adopt probabilistic inference. In particular, we create a
random variable with initial probability2 if a function is a
common ancestor of the cryptographic functions. For Fig-
ure 5, we create random variables for functions 𝑓1 and 𝑓2as they call both a ZUC function and a SNOW 3G function
identified previously. Then, we introduce a preferable rela-
tionship (see §2) to prioritize lower common ancestors. This
is based on our intuition that the MAC function should be lo-
cated close to these cryptographic functions. Continuing with
the example in Figure 5, we prefer 𝑓1 over 𝑓2 as 𝑓2 calls 𝑓1.
Therefore, a preferable relationship is added between the two
nodes. BASECOMP constructs a call graph of the firmware, it-
erates over each caller-callee pair, and registers the preferable
relationship for common ancestors in the factor graph.
Step 2: Identifying the message type comparing func-
tion. Second, BASECOMP detects the message type com-
paring logic. Remember that the specification (the subclause
4.4.4.2 of TS 24.301 [3]) states that the integrity function must
compare message types to allow exceptional messages before
security exchange (i.e., in the insecure state). Unfortunately, it
is very challenging to identify this logic in a deterministic way.
Approaching this problem naively, we try locating a function
that compares message types in the specification. However,
without an expensive analysis (e.g., symbolic analysis), it is
difficult to retrieve message types completely considering the

2§7.2 describes how the values of initial probability and preference rela-
tionships are decided.

USENIX Association 32nd USENIX Security Symposium 3551

Call Graph

ZUC ZUC SNOW
3G

𝑓! 𝑓"
𝑓!

𝑓"

Pref

<Step 1>

𝐹!

Factor Graph

𝑔! 𝑔"

𝑐!! 𝑐!" 𝑐!# 𝑐"! 𝑐""

Pos Pos PosNeg Pos

𝑔! 𝑔"

𝐹! 𝐹"

𝐹#

*

𝐹" 𝐹#Pref

<Step 2>

<Step 3>

* *

Figure 5: Example of a factor graph constructed.

complexity of modern optimization. More seriously, we can-
not assume that the function is correct (which is actually not),
as it might compare more or fewer message types than the
specification defines.

To tackle this issue, BASECOMP represents the message
type comparing logic also with probabilistic inference. In
particular, BASECOMP iterates over every function in the
firmware and collects constants for comparison. This analysis
is syntactic, which makes it efficient but error-prone. Thus,
we use probabilistic inference. If a certain constant is matched
with an expected message type, we add a positive relationship
to a random variable for that function. Otherwise, we add
a negative relationship. Then, we compute each function’s
likelihood for the message comparing function. Note that this
approach is more resilient to errors in analysis and buggy im-
plementations because we do not draw any hasty conclusions.
In Figure 5, 𝑔1 and 𝑔2 are functions that have comparisons
with constants. For 𝑔1, 𝑐11 and 𝑐12 creates a positive rela-
tionship to 𝑔1 as they are expected message types, while 𝑐13creates a negative one as it is not an expected message type. 2
positive relationships are added to 𝑔2 as both 𝑐21 and 𝑐22 are
expected message types.
Step 3: Putting it all together. Finally, we determine the
integrity function using the same method in step 1. In more
detail, we first identify common ancestors of the MAC func-
tion and message type comparing function. Just as in step 1,
we then create a preferable relationship between the caller and
the callee to prioritize lower common ancestors. In Figure 5,
functions 𝐹1, 𝐹2 and 𝐹3 are identified first and the preference
relationship between 𝐹2 and 𝐹3 is created afterwards. Then,
we compute the marginal probability of each function with the
belief propagation algorithm. We can find the actual integrity
function by verifying functions starting at the top of the rank.

5.2 Gathering Information from Firmware for
Symbolic Analysis

Next, we need to acquire information about the baseband
firmware’s integrity protection function for BASECOMP’s sym-

1 analysis: ./analysis_samsung.py
2
3 # Functions for analysis
4 integrity_func: 0x4150AECD
5 mac_validation_func: 0x4150A3D6
6 security_state: 0x429B27C4
7
8 # Functions to skip to avoid path explosion
9 skip_funcs:

10 - 0x40CECC87
11 - 0x4057F5FB

(a) A firmware-specific configuration file of Galaxy S10 5G.
1 def symbolize(s, config):
2 # Symbolizes a message buffer and a state variable
3 msg_buf = s.solver.BVS(’message_buffer’, 32)
4 s.regs.r0 = msg_buf
5
6 sec_state = s.solver.BVS(’security_state’, 8)
7 s.memory.store(config.security_state, sec_state)
8
9

10 def accepting(s, config):
11 # Check if this return represents accepting a message
12 return s.ret_val == 1

(b) A vendor-specific analysis module for Samsung.
1 def symbolize(s, config):
2 struct = s.solver.BVS(’struct’, 32)
3 s.regs.r1 = struct
4
5 msg_buf = s.solver.BVS(’message_buffer’, 32)
6 s.memory.store(struct + 4, msg_buf)
7
8 def symbolize_security_state(s):
9 return s.solver.BVS(’security_state’, 8)

10
11 hook(config.security_state_func, symbolize_security_state)
12
13 ...

(c) A vendor-specific analysis module for Mediatek.
Figure 6: Firmware-specific and vendor-specific files for
BASECOMP’s symbolic analysis

bolic analysis. In this stage, we rely on human experts to
examine the integrity protection function and write files like
Figure 6. We leave automation for this part as future work be-
cause 1) cross-vendor implementations vary greatly from one
another, 2) bugs in implementation impede deterministic rea-
soning, and 3) the complexity of analyzing implementations
without any domain knowledge. For example, we discovered
that a security state in Samsung baseband firmware is indis-
tinguishable from other variables because it has almost no
impact on authentication due to bugs (see §9 for more details).
Human analysts can identify it as a mis-implementation (e.g.,
from debugging messages); however, automated methods are
difficult due to their mere impact.

For its further symbolic analysis, BASECOMP requires a
firmware-specific configuration file and a vendor-specific anal-
ysis module. The firmware-specific configuration (e.g., Fig-
ure 6a) specifies binary-related information, such as addresses
of the integrity protection function, MAC validation function,
and security state. It may also contain a deny-list of functions
that should be skipped to avoid path explosion; the integrity

3552 32nd USENIX Security Symposium USENIX Association

protection function is not as simple as its specification and
contains other relevant features (e.g., replay protection or mes-
sage handling). The vendor-specific analysis module specifies
routines for analyzing a certain vendor’s firmware and man-
ages vendor-specific differences. For example, symbolize
defines how to symbolize variables in the firmware. In par-
ticular, to analyze Samsung’s firmware (Figure 6b), we need
to symbolize a message buffer, which is passed as the first
argument (r0 in ARM) of the integrity protection function
(Line 3–4 in Figure 6b). Moreover, we need to symbolize
a security state that is maintained as a global variable (Line
6–7). This module also defines how to determine whether a
certain message is accepted or not (Line 10–12). For example,
in Samsung, the integrity protection function returns 1 if the
message can be accepted. This global variable’s address may
vary across different firmware versions. In order to determine
this address, the analysis module uses the firmware-specific
configuration (Line 7). Unlike Samsung, Mediatek firmware
stores its message buffer as a structure (Line 2–6 in Figure 6c)
and uses a function to indicate a security state (Line 8–11).

We wish to emphasize that thanks to our probabilistic in-
ference, human experts only need to analyze 1–3 functions
among 80K functions in average (see §7). Additionally, the
vendor-specific analysis can also be applied to other firmware
binaries from the same vendor thanks to their similarity. Defin-
ing variables in the firmware-specific configuration is suffi-
cient to apply the analysis to various models. Thus, an analyst
who uses BASECOMP only needs to write a few lines of code
to support other firmware or vendors (see Table A2). Then,
BASECOMP uses this information in the subsequent phase to
analyze the integrity protection function automatically using
symbolic analysis.

5.3 Symbolically Analyze Integrity Protection
Following Specification

Building a reference model. To analyze integrity protection,
BASECOMP requires a reference model for integrity protec-
tion. Luckily, this model is relatively simple unlike its im-
plementation; therefore, we build it manually based on the
subclause 4.4.4.2 of TS 24.301 [3]. Recall that this subclause
defines plaintext messages that can be accepted without in-
tegrity protection. Particularly, we represent this model with
symbolic constraints to compare them with those from the
implementation. Table 2 shows constraints for plaintext mes-
sages based on the specification. It is worth noting that we
must consider implicit constraints from the subclause, such
as the security state or security header type to analyze the
baseband firmware. In summary, based on the specification,
the baseband firmware should accept only a specific set of
messages in plaintext before exchanging the security context
(i.e., only in the INSECURE state).
Building an implementation model using symbolic execu-

1 def symbolically_analyze_integrity_func(config):
2 # Make an under-constrained state for symbolic analysis
3 states = [
4 config.analysis.symbolize(State(config.integrity_func))
5]
6 constraints = []
7
8 while states:
9 cur_state = states.pop()

10 while True:
11 instr = cur_state.next_instr()
12
13 if instr.type == CALL:
14 target_func = instr.operand
15 # Drop a path that validates MAC (i.e., not plaintext)
16 if target_func == config.mac_validation_func:
17 break
18 # Skip irrelevant functions to avoid path explosion.
19 elif target_func in config.skip_funcs:
20 cur_state.skip_instr()
21 continue
22
23 # If the integrity function accepts a current message, add
24 # the path constraints for return.
25 elif instr.type == RET
26 and instr.operand == config.integrity_func:
27 if config.analysis.accepting(cur_state):
28 constraints.append(cur_state.constraints)
29 break # Finish analyzing this path.
30
31 # If a branch is symbolic, fork states for exhaustive
32 # analysis and interally update constraints.
33 elif cur_state.is_symbolic_branch(instr):
34 state_forked = cur_state.fork(instr)
35 if state_forked:
36 states.push_back(state_forked)
37
38 cur_state.exec_instr(instr)
39
40 return constraints # Returns constraints for plaintexts

Figure 7: Pseudocode of symbolic analysis for integrity protection.

tion. As illustrated in Figure 7, BASECOMP analyzes the
integrity protection via symbolic execution. BASECOMP ana-
lyzes only the integrity protection function without dealing
with the entire baseband software following the concept of
under-constrained symbolic execution [50] (Line 2–5). That
is, BASECOMP runs symbolic execution from the beginning
of the function to its return. BASECOMP marks the variables
of interest to track, such as the message buffer and security
state variable before running symbolic execution (Line 4).
As a result, BASECOMP evaluates how those symbolic vari-
ables are used in the integrity protection function. Specifi-
cally, BASECOMP collects symbolic variables and constraints
associated with an accepted message (Line 25–29) without
performing MAC validation (Line 16–17). Such a message is
particularly interesting because it can be crafted by an attacker
with no valid key. Additionally, BASECOMP avoids path ex-
plosion by skipping manually provided irrelevant functions,
such as those for logging (Line 19–21).
Comparative analysis. After that, BASECOMP identifies a
list of acceptable message types and additional conditions (e.g.,
message types and security header types) by concretizing sym-
bolic constraints for the state variable. Then, BASECOMP com-
pares them with our model from the specification to discover
inconsistencies. BASECOMP will report any mismatches, and

USENIX Association 32nd USENIX Security Symposium 3553

Table 2: Constraints of plaintext NAS messages that can be accepted
without security protection (in the INSECURE state).
SECURITY

State
Security

Header Type Message Type Other Conditions

INSECURE 0 (Not Protected) Identity Request Identity Type is IMSI
INSECURE 0 (Not Protected) Authentication Request
INSECURE 0 (Not Protected) Detach Accept
INSECURE 0 (Not Protected) Authentication Reject
INSECURE 0 (Not Protected) Attach Reject EMM Cause ! = 25
INSECURE 0 (Not Protected) Tracking Area Update Reject EMM Cause ! = 25
INSECURE 0 (Not Protected) Service Reject EMM Cause ! = 25

Table 3: Components and lines of code (LoC) of BASECOMP.
Component LoC (Python)
Loading firmware to IDA 1,798 lines
Probabilistic inference 468 lines
Symbolic analysis of integrity protection 529 lines
MIPS16e2 support 1,957 lines
Total 4,752 lines

we need to further analyze their implication to determine
whether they can lead to security-critical issues. We applied
this approach to Samsung, MediaTek, and srsRAN baseband
and discovered 29 bugs that can be categorized into 15 types
(E1–E15), including one NAS AKA bypass vulnerability in
Samsung (E4).

BASECOMP determines message acceptance conservatively
to avoid false positives. More specifically, BASECOMP con-
cludes that a message is rejected if the same message (i.e.,
with the same headers and payload) can be both accepted or
rejected according to some external variable. This can happen
if the firmware implements emergency or debugging features.
In fact, Samsung’s integrity protection function allows every
message as plaintext if an emergency call is ongoing. Using
this method, we can avoid such cases automatically.

6 Implementation

We implemented our prototype, BASECOMP, mainly in Python
with 4.7k lines of code as shown in Table 3. To analyze base-
band software, we used the state-of-the-art binary analysis
tool, IDA Pro v7.6 [26]. It provides useful Python APIs for
binary analysis, ranging from a basic disassembler to even
a remarkable decompiler called Hex-Rays. In addition, IDA
Pro supports static analysis on top of the decompiled source
code from Hex-Rays. Thus, we utilized this feature for an-
alyzing integrity protection (§5). To load firmware to IDA,
we followed BaseSpec’s instructions [33]. The probabilistic
inference engine is built on pgmpy [6], a python library for
probabilistic graphical models. To build the call graph for
firmware, we relied on NetworKit [58], a large-scale network
analysis tool. Moreover, we utilized angr, a promising binary
analysis framework [57], to apply symbolic execution.

Table 4: The rank and probability of the integrity checking function
for each firmware by the value of 𝑝.

Firmware Size (KB) # of
functions

p=0.2 p=0.3 p=0.4
Rank Prob Rank Prob Rank Prob

G950 42212 64184 1 0.941 1 0.823 1 0.582
G955 42791 61596 1 0.941 1 0.823 1 0.582
G960 42542 74311 1 0.939 1 0.811 1 0.561
G965 42591 74259 1 0.939 1 0.811 1 0.561
G970 45105 91656 1 0.992 1 0.942 1 0.716
G975 45349 75299 1 0.945 1 0.816 1 0.562
G977 45409 92416 1 0.992 1 0.942 1 0.715
G991 68189 103334 3 0.702 3 0.607 3 0.590
G996 67902 107536 1 0.779 1 0.627 1 0.440
G998 67901 103117 3 0.703 3 0.615 3 0.551
Pro 7 18193 48350 2 0.999 2 0.996 2 0.933
A31 23004 93550 2 0.999 2 0.998 2 0.933

A31 (Latest) 23036 93754 2 0.999 2 0.999 2 0.968
A03s 17212 64942 2 0.999 2 0.999 2 0.968
A145 17372 65075 2 0.999 2 0.999 2 0.968
srsran 95083 95842 1 0.799 1 0.690 1 0.529

7 Evaluation

In this section, we evaluate our approach, BASECOMP, to
answer the following questions:
• How effectively can BASECOMP find the integrity protection

function in the firmware? (§7.2)
• How effectively can BASECOMP discover bugs in message

authentication? (§7.3)
• How effective is BASECOMP in finding bugs in integrity pro-

tection, compared to existing dynamic techniques? (§7.4)
• How long does it take to run BASECOMP? (§7.5)

7.1 Evaluation Setup

Firmware. We collected a total of 16 images, as shown
in Table A1. We first downloaded 10 firmware images for
smartphones with Samsung’s baseband (Galaxy S8, S9, S10,
and S21 series) from Samsung’s cloud server for firmware
updates. In addition, to analyze various vendors’ implementa-
tions, we obtained 2 from MediaTek and compiled the open-
source project, srsRAN. For MediaTek, we found one for
MEIZU Pro 7 on the web and the other one for Galaxy A31
in Samsung’s cloud server, respectively. We wish to empha-
size that the firmware for Galaxy A31 is based on MIPS16e2
with application-specific extensions, and srsRAN is compiled
into x86. This demonstrates BASECOMP’s effectiveness in
supporting diverse architectures.
Machine. We performed all the following experiments on
Windows 11 Pro equipped with AMD Ryzen 9 5900X 12-Core
Processor, 3.70GHz, 64GB DDR4 RAM.

7.2 Identifying Integrity Protection

Effectiveness. For its probabilistic inference, BASECOMP
needs to define parameters for functions in a factor graph,
namely 𝑝𝑃𝑜𝑠, 𝑝𝑁𝑒𝑔 , and 𝑝𝑃𝑟𝑒𝑓 . Currently, we arbitrarily
choose these values based on parameter 𝑝 as follows.

3554 32nd USENIX Security Symposium USENIX Association

𝑝𝑃𝑜𝑠 = 𝑝
𝑝𝑁𝑒𝑔 = 0.5+ (0.5−𝑝)∕2
𝑝𝑃𝑟𝑒𝑓 = 𝑝

We intentionally lower the effect of 𝑝𝑁𝑒𝑔 than 𝑝𝑃𝑜𝑠 as we
prefer a function with one matching comparison and one non-
matching comparison over a function with no comparisons.

To demonstrate its effectiveness, we run BASECOMP’s prob-
abilistic inference to all firmware binaries in Table A1 with the
default setting (𝑝 = 0.2). As shown in Table 4, BASECOMP
can discover the integrity protection for all firmware within
the top three ranks. Taking into account the size and the num-
ber of functions in these firmware binaries, we believe that
BASECOMP’s probabilistic inference significantly reduces the
amount of manual effort required by users; baseband firmware
is extremely complicated, including more than 80K functions
on average.

We observed that BASECOMP’s probabilistic inference is ef-
fective across models and vendors. For example, BASECOMP
is able to successfully detect the integrity protection func-
tion for S950 and S996 in the top rank even though their
probabilities (0.941 and 0.779, respectively) indicate their
drastically different shapes. Moreover, BASECOMP discovers
the integrity protection function of MediaTek’s MEIZU Pro
7 in the second rank. This implies that our technique is not
vendor-specific and can be utilized generally.
Reasons for not being ranked at the top. BASECOMP fails to
locate the genuine integrity protection function at the first rank
for two reasons. First, as BASECOMP favors lower common an-
cestors, sub-routines of the actual integrity protection function
can be placed in higher ranks because they can also contain
both the MAC validating and message comparing logic. For
example, we concluded that the top-ranked function of Pro
7 is such an example. Second, it is possible that firmware
re-implements integrity protection for other purposes. For
example, we found that G998 contains additional integrity
protection that seems to be used for testing [32]. This is not
the integrity protection function for security that we seek;
however, BASECOMP is unable to distinguish the two due to
its lack of understanding of their usages.
Robustness. We also evaluate if BASECOMP’s probabilistic
inference is sensitive to the parameter 𝑝. For that, we repeat
the previous evaluation with 𝑝’s value to 0.3 and 0.4. As
shown in Table 4, BASECOMP is resilient to changes in 𝑝.
Even though the final probabilities are different, none of the
ranks are affected by the value of 𝑝. This demonstrates that
our intuitive but seemly arbitrary selection of functions in a
factor graph is acceptable.

7.3 Analyzing Integrity Protection
Table 5 illustrates BASECOMP’s comparative analysis results
for integrity protection. We identified acceptable plaintext
messages and their constraints in detail via symbolic execution.

BASECOMP discovers mismatches by comparing these results
with constraints from the specification (Table 2). In summary,
BASECOMP reports a total of 34 mismatches and 29 of them
were actual bugs. We identified actual bugs by testing them
over-the-air. The remaining 5 were all false positives where
the integrity protection was applied outside of our analysis
scope in an ad-hoc manner. We describe the details of the
false positives at the end of this section.

The mismatches are classified by the constraints we ex-
tracted from symbolic execution. For instance, the third row
of Table 5 shows that the integrity protection function ac-
cepts an Identity Request message as plaintext (i.e., se-
curity header type is 0 that represents Not Protected) in the
INSECURE state and when the Identity Type field in the message
payload is not IMSI. It is worth noting that because baseband
software only offers integer values for messages, we identified
message types and fields from the specification for clarity.

We categorized the bugs into 15 types (E1–E15). Each bug
type is described with an analysis of its root cause and the
security implication will be further discussed in the following
section (§8).
Root cause analysis (E1–E3). Subclause 4.4.4.2. in TS
24.301 specifies messages that can be accepted as plain-
text. In addition to the message type, there are additional
conditions for certain messages. Bugs E1–E3 result from
the absence of these additional checks. In particular, E1–
E3 are caused by allowing the EMM Cause of the Attach
Reject, Tracking Area Update Reject and Service
Reject to be #25, which is not allowed by the specification.
Root cause analysis (E4). E4 (only in Samsung) allows any
plaintext message to be accepted before security activation if
its security header type is invalid (i.e., neither 0, 1, 2, 3 nor
12). This allows an attacker to bypass NAS AKA, becoming
possible any malicious behavior such as SMS phishing. This
is caused by improper validation of an incoming message.

Figure 8 illustrates the simplified code for integrity pro-
tection in Samsung. The CheckHeader function in Figure 8
verifies the security header type in the INSECURE state (Line
43 – 49). Unfortunately, the function only compares the se-
curity header type with zero and always returns true if it is
not. Notably, other checks (i.e., CheckSeq and ValidMac) are
invoked only when the message’s security header type is either
1, 2, or 3. In addition, there is a dedicated routine for when
the security header type is 12; used for Service Request
messages. As a result, if the security header type of an incom-
ing message is larger than 3 and not 12, the message will be
blindly accepted even though it is not allowed according to
the specification.
Root cause analysis (E5–E11). Bugs E5–E11 are related to
incorrect handling of plaintext messages in the SECURE state.
In particular, the specifications only define a few types of
messages that can be accepted as plaintext before security ac-
tivation (i.e., in the INSECURE state). After security activation,

USENIX Association 32nd USENIX Security Symposium 3555

Table 5: The list of plaintext messages that satisfies the firmware’s integrity protection function and their condition but mismatches the
specification (Table 2). Cells are marked with circles if the vendor accepts the specific mismatch. Cells marked FP are false positives and
further described in §7.3.
SECURITY

State
Security

Header Type Message Type Other Conditions Mismatches in Errors ImplicationSamsung MediaTek srsRAN
INSECURE 3 Secure Mode Command FP
INSECURE 0 (Not Protected) Identity Request Identity Type ! = IMSI FP Info leak [29, 43, 48]
INSECURE 0 (Not Protected) Attach Reject EMM Cause == 25 FP ● E1 DoS [48]
INSECURE 0 (Not Protected) Tracking Area Update Reject EMM Cause == 25 FP ●† E2 DoS [12, 13, 65]
INSECURE 0 (Not Protected) Service Reject EMM Cause == 25 FP ● E3 DoS [13]
INSECURE ! = 0, 1, 2, 3, 12 * ● E4 Auth bypass
SECURE 0 (Not Protected) Identity Request Identity Type == IMSI ○ ○ ● E5 Info leak [29, 43, 48]
SECURE 0 (Not Protected) Authentication Request ○ ○ ● E6 Location leak [29, 31]
SECURE 0 (Not Protected) Detach Accept ◑ ◑ ●† E7 -
SECURE 0 (Not Protected) Authentication Reject ◑ ◑ ● E8 DoS
SECURE 0 (Not Protected) Attach Reject EMM Cause ! = 25 ◑ ◑ ● E9 DoS [54]
SECURE 0 (Not Protected) Tracking Area Update Reject EMM Cause ! = 25 ○ ◑ ●† E10 DoS [13, 54, 65]
SECURE 0 (Not Protected) Service Reject EMM Cause ! = 25 ◑ ○ ● E11 DoS [13, 54]
* 0 (Not Protected) Detach Request ● E12 DoS [12, 28, 35]
* 0 (Not Protected) EMM Information ● E13 Info spoofing [35, 48, 49]
* 0 (Not Protected) EMM Status ● E14 - [35]
* 4 * ● E15 Auth bypass

Total number of Mismatches 9 10 15
Bugs 8 7 14

●: New bugs (neither bug nor its root cause previously reported), ◑: Duplicated bugs (not previously reported, but bugs with identical root causes were), ○: Old bug (previously
reported) †: This bug has no implication due to the absence of handlers in the current implementation.

the baseband software should not accept these messages as
plaintext. However, all tested vendors allow these messages
as plaintext even after security activation.

The CheckHeader function in Figure 8 checks whether the
given message type is allowed in plaintext according to the
specification (subclause 4.4.4.2. in TS 24.301). This should
be checked only in the INSECURE state, as shown in Line 43–
44. However, developers misunderstood the specification and
implemented the baseband software to allow them even in the
SECURE state (Line 34–37). As a result, seven messages are
incorrectly accepted by Samsung and MediaTek’s baseband
(E5–E11) as the code of the integrity protection function for
the two vendors is nearly identical. In the case of srsRAN, the
implementation does not track the security state in the integrity
protection function. This makes the INSECURE and SECURE
states indistinguishable. Consequently, plaintext messages
that should only be allowed in the INSECURE state are also
allowed in the SECURE state (E5–E11).
Root cause analysis (E12–E14). Apart from the message
types specified in Subclause 4.4.4.2. in TS 24.301, srsRAN
’s implementation accepts 3 additional message types in
plaintext: Detach Request, EMM Information, and EMM
Status (E12–E14).
Root cause analysis (E15). Lastly, srsRAN accepts the secu-
rity header type — integrity protected and ciphered with new
EPS security context — without any integrity check (E15).
Notably, according to the specification, this type should only
be used for the Security Mode Complete message. As a
result, this error leads to NAS AKA bypass, similar to E4.
False positives. Due to the limited scope of BASECOMP
(i.e., only the integrity protection function), we found that
BASECOMP can result in false positives — mismatches in

the integrity protection function that are not bugs. In partic-
ular, BASECOMP reports that the integrity protection func-
tion accepts the Security Mode Command message in the
INSECURE state if security header type is 3, which stands for
integrity protected with new EPS security context (see Ta-
ble 1). This special security header type can only be used for
Security Mode Command and should be integrity protected.
However, after post-analysis, we discovered that the message’s
integrity is validated in another dedicated routine as Security
Mode Command has a special role in integrity protection. Note
that Security Mode Command is a message for establishing
a security context for integrity protection. BASECOMP also re-
ports that srsRAN accepts Identity Request messages in
the INSECURE state without IMSI checking and MediaTek ac-
cepts Attach Reject, Tracking Area Update Reject
and Service Reject messages in the INSECURE state with-
out checking the EMM Cause. However, these cases are
later validated in routines after the analyzed integrity pro-
tection function alike the previous case. This demonstrates
a drawback of static analysis similar to BASECOMP. How-
ever, BASECOMP is useful as this can be complemented with
over-the-air testing.

7.4 Comparison to Dynamic Testing
To compare BASECOMP with dynamic testing, we review
DoLTEst [48] and DIKEUE [29] that use dynamic testing for
analyzing integrity protection. For comparison, we re-run
DoLTEst, and for DIKEUE, we referred to the results in the paper
because only their FSM modules were open-sourced. Table 6
shows the integrity protection bugs that BASECOMP and other
approaches discover for Samsung devices. This demonstrates
that BASECOMP can cover more types of integrity protec-

3556 32nd USENIX Security Symposium USENIX Association

1 // These are arbitrary named for better explanation.
2 enum SecState { SECURE, INSECURE };
3
4 // A state variable for a security context.
5 SecState sec_state;
6
7 bool IntegrityProtection(void* message) {
8 // Returns true if the ’message’ is valid to be accepted.
9 if (CheckHeader(message)

10 && (!IsProtected(message) || CheckSeq(message))
11 && (!IsProtected(message) || ValidateMac(message)))
12 return true;
13 else
14 return false;
15 }
16
17 bool IsProtected(void* message) {
18 uint8_t sec_hdr_type = GetSecHdrType(message);
19 return sec_hdr_type != 0 && sec_hdr_type <= 3;
20 }
21
22 bool CheckAllowableInNonSecure(void* message) {
23 // Returns true if the ’message’ is specified
24 // as exceptions in TS 24.301.
25 ...
26 }
27
28 bool CheckHeader(void* message) {
29 uint8_t sec_hdr_type = GetSecHdrType(message);
30
31 if (sec_state == SECURE)
32 {
33 if (sec_hdr_type == 0) {
34 // BUG #1: In the SECURE state,
35 // plaintext messages should not be accepted.
36 return CheckAllowableInNonSecure(message)
37 }
38 else if (IsProtected(message))
39 return true;
40 else
41 return false;
42 } else { // INSECURE
43 if (sec_hdr_type == 0)
44 return CheckAllowableInNonSecure(message);
45 else {
46 // BUG #2: In the INSECURE state,
47 // this function returns true
48 // if sec_hdr_type is non-zero yet invalid.
49 return true;
50 }
51 }
52 }

Figure 8: Simplified version of the decompiled code for integrity
protection in Samsung.

tion bugs than recent dynamic approaches. This happens for
two reasons. First, to tame an extremely large input space,
dynamic approaches are limited in testing a few critical mes-
sages (such as Identity Request and Authentication
Request), while leaving out others (E7–E11). Second, dy-
namic testing only focuses on semantically valid messages,
similarly to reduce the search space. Unfortunately, to dis-
cover E4, a semantically invalid message with non-zero secu-
rity header type but without Authentication Header must be
created (see Figure 2). It is worth noting BASECOMP is more
restricted than dynamic methods in terms of applicability (e.g.,
devices or other features to test). Nevertheless, BASECOMP
can complement dynamic testing in terms of completeness for
analyzing integrity protection.

Table 6: Integrity protection bugs in Samsung devices discovered by
BASECOMP and recent dynamic approaches, DoLTEst and DIKEUE.

E4 E5 E6 E7 E8 E9 E10 E11
BASECOMP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DoLTEst [48] ✓

DIKEUE [29] ✓ ✓

Table 7: Elapsed time for BASECOMP’s probabilistic inference and
symbolic analysis, in seconds.
Firmware Probabilistic Inference Symbolic

Analysis Total
Call Graph Step 1 Step 2 Step 3 Total

G950 15.7 13.6 538.3 13.2 580.9 473.2 1054.0
G955 14.4 13.7 471.1 12.6 511.8 474.8 986.6
G960 21.4 11.0 620.6 21.2 674.1 15.3 689.4
G965 21.1 12.2 563.3 22.8 619.4 17.9 637.3
G970 42.6 62.9 783.5 52.7 941.8 28.7 970.5
G975 21.8 6.1 617.6 13.3 658.8 17.3 676.0
G977 49.8 76.1 773.7 52.5 952.1 62.6 1014.7
G991 82.7 101.9 754.3 27.8 966.6 45.9 1012.6
G996 94.7 46.2 762.8 19.6 931.9 45.8 977.8
G998 80.2 951.9 718.8 63.5 1814.4 46.5 1861.0
Pro 7 10.1 - 294.0 17.0 312.1 11.1 332.2
A31 45.1 - 633.7 34.8 713.5 67.3 780.8

A31 (Latest) 49.2 - 631.5 77.9 758.6 57.9 816.5
A03s 15.4 - 421.2 118.7 555.2 6.3 561.5
A145 15.4 - 459.5 48.4 523.4 57.7 581.1
srsran 47.2 308.5 405.0 18.4 779.2 30.0 809.2

Average 39.2 145.8 590.6 38.4 768.9 91.2 860.1

7.5 Performance Evaluation

Table 7 shows the elapsed time of BASECOMP, including call
graph construction (Call graph), each step of probabilistic
inference (Step 1, Step 2, and Step 3), and symbolic analysis
(Symbolic Analysis). To determine the elapsed time, we run
BASECOMP for each firmware three times and average their re-
sults. In short, BASECOMP requires 860.1 seconds on average.
Step 2 in probabilistic inference is the most time-consuming
because the belief propagation algorithm is expensive for a
large factor graph; every function with a comparison to an
expected value will become a node in the graph in Step 2.
BASECOMP’s symbolic analysis is quite fast (91.2 seconds on
average) thanks to its firmware-specific configuration, which
allows BASECOMP to avoid functions that cause path explo-
sion. We found that angr fails with out of memory without
such information.

8 Security Analysis and Case Study

In this section, we further discuss the implications of the bugs
that we discovered (E1–E15). We built our environment using
universal software radio peripheral (USRP) with srsRAN [21]
and validated all of our findings over-the-air. Note that we used
Galaxy S10e and Galaxy S10 5G, Galaxy A31, and srsUE as
representative devices for testing Samsung, MediaTek, and
srsRAN basebands, respectively.

USENIX Association 32nd USENIX Security Symposium 3557

8.1 NAS AKA Bypass Vulnerability (E4)
We discovered that E4 in Samsung can cause a critical issue,
leading to LTE NAS authentication bypass. Using this vul-
nerability, attackers with a malicious base station can bypass
NAS authentication and key agreement (AKA) procedures
and send arbitrary NAS messages in plaintext. Although we
demonstrated this vulnerability on Galaxy S10 5G, we believe
that it will affect most smartphones from Samsung.
Exploit details. We further describe our proof-of-concept
exploits to highlight the severity of this bug. As mentioned
earlier, BASECOMP discovered that any plaintext NAS mes-
sage can bypass integrity protection if its security header type
is something other than 0, 1, 2, 3, and 12. Using this flaw, an
attacker can send any prohibited messages such as Identity
Request (with IMEI as identity type), EMM Information,
and even Attach Accept in plaintext, prior exchanging se-
curity context (i.e., in INSECURE state).

We demonstrate this attack by delivering an arbitrary SMS
with a malicious base station3, as shown in Figure 10. Figure 9
illustrates our exploitation steps. First, when a smartphone
sends an Attach Request message to connect to the mali-
cious base station, the attacker responds with a plain Attach
Accept message without key agreement procedures, includ-
ing Security Mode Command/Complete. This violates the
specification because the Attach Accept message should
be integrity protected. However, due to the vulnerability, the
baseband software accepts this plaintext message if the secu-
rity header type is larger than 3 and not 12. After receiving
the Attach Complete message from the smartphone, the
attacker sends a Downlink NAS Transport message with
SMS as plaintext by abusing the vulnerability again. In this
message, the attacker can add any SMS data (e.g., the phone
number of the sender, the received time, and even the SMS
content), as shown on the right side of Figure 10. We believe
this exploit can lead to further attacks like SMS phishing [8].

Notably, this is only an illustrative implication of this vul-
nerability. Simply speaking, this vulnerability allows us to
severely break the security of mobile communication in smart-
phones with Samsung baseband. For instance, the attacker
can gather IMEI by sending the Identity Request mes-
sage, which is only allowed in the SECURE state according to
the specification. Furthermore, the attacker can modify the
current time on smartphones using the EMM Information
message. We responsibly disclosed the vulnerability details
and possible attack scenarios to the manufacturer, Samsung.
In response, Samsung assigned the vulnerability critical sever-
ity and awarded us with a bug bounty.

8.2 Mishandling of Plain Messages (E5 – E11)
We discovered that the integrity protection error cases, E5
through E11, may cause security issues such as denial of ser-

3The demo video is uploaded on https://youtu.be/4yM3uyiRzvo

Attacker
Attach Request

Auth Request

Auth Response

Security Mode Command

Security Mode Complete

Attach Accept

Not Protected

AKA Bypass

Attach Complete

SMS message

Modified message
(sec_hdr_t > 3)

Victim

Figure 9: AKA bypass vulnerability and SMS-phishing attack

vice [54] and information leakage [15]. For instance, attackers
may inject reject messages, such as an Attach Reject mes-
sage, to forcibly release the victim’s connection. To exploit
these errors, the attacker can leverage a man-in-the-middle
attack [52,53] or a signal injection attack [17,63] to inject mali-
cious messages into the communication between smartphones
and the base station. However, because these error cases occur
after the security context exchange (i.e., in the SECURE state),
the RRC layer would be already secured. Therefore, attackers
would have to inject messages before the victim activates the
RRC layer security. Note that a man-in-the-middle attacker
can easily exploit this timing, as the attacker can control the
protocol message flow and not activate the RRC layer security.
Alternatively, attackers can leverage other vulnerabilities to
incapacitate RRC layer security to inject seven types of NAS
messages in plaintext by exploiting E5–E11. Also, we respon-
sively disclosed our findings to the corresponding vendors.

8.3 Security analysis for srsRAN
Using BASECOMP, we found that attackers can exploit all
bugs in srsRAN except for those where the corresponding han-
dlers are not implemented (E2, E7, and E10) or the Samsung-
specific bug (E4). In this section, we discuss srsRAN-specific
bugs (E12–15).

We found srsRAN accepts other message types that are not
allowed in the specification (E12–14). These issues result in
diverse implications. In particular, attackers can change the in-
ternal state of a UE and deactivate the EPS bearer, which is es-
sential for the UE to use the internet, by exploiting E12. Also,
attackers may exploit E13 to inject an EMM Information
message and manipulate the network time and network name.
We verified that E14 has no implication because it is only used
to report error conditions. As a result, no implication for a UE
accepting a plain EMM Status message, which is accepted
by E14, has yet been reported.

Lastly, we discovered that E15 in srsRAN can also cause
a NAS AKA bypass, which has the same implication as E4.
Compared to E4, E15 has a wider attack surface in terms
of security state; attackers can exploit E15 regardless of the

3558 32nd USENIX Security Symposium USENIX Association

https://youtu.be/4yM3uyiRzvo

Victim Device

Attacker PC

--- Time ---
Thursday,

January, 3, 2030

--- Sender ---
01010001100

--- SMS data ---
Hello World!!

from 2030

Figure 10: Exploit environment (left side) to demonstrate the NAS
AKA bypass vulnerability (E4), delivering an arbitrary SMS message
(right side).

existence of the security context in srsRAN because srsRAN
does not track the security state in the integrity protection
function. We demonstrated all the bugs on srsUE (release
22.04) and responsibly disclosed all the bugs.

9 Discussion & Limitations

Challenges in full automation. BASECOMP is currently a
semi-automated system that involves manual analysis. We’ve
attempted to fully automate this system but decided to leave
it as future work due to several challenges. First, there are nu-
merous ways to implement even a single specification. For ex-
ample, Samsung’s implementation transfers a message buffer
to its integrity protection function as a simple array, whereas
MediaTek employs a complicated structure. Moreover, Sam-
sung and MediaTek implement a security state via a global
variable and a function, respectively. As a result, we cannot
assume any prior knowledge for their implementation; there-
fore, we rely on humans to manage such diversity. Second, the
incorrect implementation of baseband firmware significantly
hinders automated analysis. For instance, to analyze integrity
protection, we need to identify the SECURITY state. According
to the specification, certain messages should be processed
only in the SECURE state but not in the INSECURE state. For ex-
ample, if an Attach Accept message is integrity protected
with the security header type 1, the firmware should validate
its MAC only in the SECURE state; in the INSECURE state, this
message should be rejected regardless of its MAC. However,
due to a bug in Samsung, this message is always MAC vali-
dated regardless of the SECURITY state, making it difficult for
the SECURITY state to be distinguished. Finally, the integrity
protection function is not as simple as its specification. In
reality, the functionality is not isolated but includes extra secu-
rity checks (e.g., replay protection), debugging features, and
message-handling routines. Thus, these parts significantly
complicate fully automated analysis.
Limitations. Despite its success, BASECOMP also has
several limitations. First, BaseComp is built with substan-
tial manual efforts. However, the majority of its modules

are reusable, thereby significantly reducing future efforts.
Largely, BaseComp’s modules can be categorized into three:
specification-driven, vendor-specific, and firmware-specific
modules. Specification-driven modules such as the reference
model for integrity protection are compatible with all firmware.
Thus, analysts are no longer required to care about this. Al-
though vendor-specific modules should be implemented per
vendor, it is highly reusable due to the limited number of base-
band vendors. Furthermore, we have already implemented
those for Samsung and MediaTek, two of the top three base-
band vendors. Finally, we need to obtain firmware-specific
information (Figure 6a) for testing a new image. We believe
that this is not challenging; according to our experience, it
took only a few minutes thanks to code reuse within the same
vendor.

Second, we fail to support the Qualcomm baseband because
of its Hexagon architecture. Unfortunately, the state-of-the-art
tools for static analysis (e.g., IDA Pro) that BASECOMP relies
on do not support Hexagon due to its extraordinary design.
Notably, Hexagon incorporates Very Long Instruction Word
(VLIW), embedding instruction-level parallelism (ILP) in
its instruction set architecture, complicating static analysis.
Due to similar reasons, recent work for analyzing baseband
software [24,33,41] is also limited to Samsung and MediaTek.

Third, BASECOMP has a limited scope of analysis (i.e.,
integrity protection). For instance, BASECOMP does not in-
vestigate the correctness of other message handlers because
it is extremely challenging to compare them with the speci-
fication due to their diversity and complexity. Even though
several problems may exist in handlers, as we have observed
in many dynamic approaches [29, 48], BASECOMP can only
support integrity protection. This is a fundamental limitation
of symbolic analysis; however, we believe that this approach
is still a valuable approach that we need to explore further for
baseband security (§7.4).

10 Related work

Blackbox analysis for baseband firmware. There have been
several studies on analyzing software bugs or vulnerabilities
of cellular protocols implemented in baseband firmware. In
the early stage, researchers performed blackbox analysis on a
cellular device without analyzing baseband firmware directly.
For this, they built a physical testing environment using open-
source cellular projects [9, 21, 46, 62] and software-defined
radios [18, 47]. Then, they sent crafted messages to a target
device in order to analyze private information leakage [54,55],
network downgrading [39, 51], and memory-related vulner-
abilities in SMS or cell broadcast messages [44, 45, 59]. Re-
cent approaches have further systematized the methodology
to generate abnormal messages [19, 29, 31, 35, 48, 52]. Sev-
eral other studies have adopted a similar approach on various
layers, protocols, or domains in cellular networks, such as

USENIX Association 32nd USENIX Security Symposium 3559

VoLTE [34,37], SS7/Diameter [27], uplink messages [14,35],
or lower layers [38, 53, 63]. However, these approaches have
limited applicability as they require a physical testing envi-
ronment and devices. To remedy this issue, Maier et al. [41]
and Hernandez et al. [24] recently proposed an emulation-
based approach. In particular, they manually analyzed base-
band firmware to emulate it and then ran a fuzzer, such as
AFL++ [42] in order to uncover vulnerabilities. While these
approaches are advantageous as they do not require compre-
hensive understanding of baseband firmware, they are highly
likely to miss potential, critical bugs or vulnerabilities deeply
hidden in the firmware (as discussed in §9).
Whitebox analysis for baseband firmware. On the
other hand, several studies have directly analyzed baseband
firmware [11,20,60]. Due to the high complexity of baseband
software, many studies have relied on manual analysis. In
particular, Weinmann [60] utilized the JTAG debug interface
to analyze memory-related bugs of GSM protocol stacks in
baseband firmware. Golde et al. [20] and Cama [11] analyzed
Exynos baseband firmware using memory dumps, discover-
ing RCE 0-days. While these approaches provide promising
insights into baseband analysis, they are limited by the re-
quirement of physical memory dumps, which is not supported
in recent devices. Firmalice [56] suggests a generic system
for backdoor detection. However, it expects a hard-coded
credential in relatively simple binaries compared to base-
band firmware. Due to the complexity and size of baseband
firmware, we need a specialized system like BASECOMP to
support it. Similar to our work, a recent study, BaseSpec [33],
has proposed a technique to compare implementation with
the specification relying on manual and comparative analy-
sis. Unlike BaseSpec, BASECOMP focuses on integrity pro-
tection, which requires semantic reasoning with cryptogra-
phy. Moreover, BASECOMP employs probabilistic inference
to reduce the amount of manual effort significantly. As a
result,BASECOMP can discover logical inconsistencies in in-
tegrity protection, resulting in the discovery of critical security
vulnerabilities.

11 Conclusion

In this paper, we propose BASECOMP, a static approach to ana-
lyze the integrity protection of baseband software. To this end,
we use a hybrid approach combining probabilistic inference
and comparative analysis; after locating the implementation
of integrity protection, we compare it with the specification
to identify inconsistencies. As a result, we discovered several
mismatches between the specification and implementations
from Samsung and MediaTek, and a total of 29 bugs. Thanks
to its comprehensive analysis, BASECOMP successfully dis-
covered new vulnerabilities in baseband that existing blackbox
approaches had missed including the NAS authentication by-
pass, a critical vulnerability in Samsung baseband.

12 Acknowledgment

We thank the shephered and the anonymous reviewers for
their helpful comments and suggestions. This work was sup-
ported by Korea-U.S. Joint Research Support Program funded
by the Ministryof Science and ICT through the National Re-
search Foundation of Korea (2022K1A3A1A9109426711)
and by Institute for Information & communications Technol-
ogy Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No.2022-0-01202, Regional strategic
industry convergence security core talent training business).

References
[1] 3GPP. 3GPP Partners. https://www.3gpp.org/about-3gpp/
partners.

[2] 3GPP. TS 24.007; Mobile radio interface signalling layer 3; General
aspects, 2022.

[3] 3GPP. TS 24.301; Non-Access-Stratum (NAS) protocol for Evolved
Packet System (EPS); Stage 3, 2022.

[4] 3GPP. TS 35.216; Specification of the 3GPP Confidentiality and
Integrity Algorithms UEA2 & UIA2; Document 2: SNOW 3G specifi-
cation, 2022.

[5] 3GPP. TS 35.222; Specification of the 3GPP Confidentiality and
Integrity Algorithms EEA3 & EIA3; Document 2: ZUC specification,
2022.

[6] Ankur Ankan and Abinash Panda. pgmpy: Probabilistic graphical
models using python. In Proceedings of the 14th Python in Science
Conference (SCIPY 2015). Citeseer, 2015.

[7] David Berard and Vincent Fargues. How to design a baseband debugger.
In Information and Communication Technology Security Symposium
(SSTIC), Rennes, France, jun 2020.

[8] Hugo Bijmans, Tim Booij, Anneke Schwedersky, Aria Nedgabat, and
Rolf van Wegberg. Catching phishers by their bait: Investigating the
dutch phishing landscape through phishing kit detection. In Proceedings
of the 30th USENIX Security Symposium (Security), Virtual, August
2021.

[9] David A Burgess and Harvind S Samra. The OpenBTS Project. Open
Source Cellular Infrastructure, 2008.

[10] Joan Calvet, José M Fernandez, and Jean-Yves Marion. Aligot: Cryp-
tographic function identification in obfuscated binary programs. In
Proceedings of the 19th ACM Conference on Computer and Communi-
cations Security (CCS), Raleigh, NC, October 2012.

[11] Amat Cama. A walk with Shannon. In OPCDE, 2018.
[12] Yi Chen, Di Tang, Yepeng Yao, Mingming Zha, XiaoFeng Wang,

Xiaozhong Liu, Haixu Tang, and Dongfang Zhao. Seeing the forest
for the trees: Understanding security hazards in the {3GPP} ecosystem
through intelligent analysis on change requests. In Proceedings of the
31th USENIX Security Symposium (Security), Boston, MA, August
2022.

[13] Yi Chen, Yepeng Yao, XiaoFeng Wang, Dandan Xu, Chang Yue, Xi-
aozhong Liu, Kai Chen, Haixu Tang, and Baoxu Liu. Bookworm game:
Automatic discovery of lte vulnerabilities through documentation anal-
ysis. In Proceedings of the 42nd IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, May 2021.

[14] Merlin Chlosta, David Rupprecht, Thorsten Holz, and Christina Pöpper.
LTE Security Disabled: Misconfiguration in Commercial Networks. In
Proceedings of the 12th Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec), Miami, FL, May 2019.

3560 32nd USENIX Security Symposium USENIX Association

https://www.3gpp.org/about-3gpp/partners
https://www.3gpp.org/about-3gpp/partners

[15] Adrian Dabrowski, Nicola Pianta, Thomas Klepp, Martin Mulazzani,
and Edgar Weippl. IMSI-Catch Me If You Can: IMSI-Catcher-Catchers.
In Proceedings of the Annual Computer Security Applications Confer-
ence (ACSAC), 2014.

[16] Guillaume Delugré. Reverse engineering a Qualcomm baseband. In
28th Chaos Communication Congress, Berlin, Germany, dec 2011.

[17] Simon Erni, Patrick Leu, Martin Kotuliak, Marc Röschlin, and Srdjan
Čapkun. Adaptover: Adaptive overshadowing of lte signals. arXiv
preprint arXiv:2106.05039, 2021.

[18] USRP Ettus. B210.
[19] Kaiming Fang and Guanhua Yan. Emulation-Instrumented Fuzz Test-

ing of 4G/LTE Android Mobile Devices Guided by Reinforcement
Learning. In Proceedings of the 23th European Symposium on Re-
search in Computer Security (ESORICS), Barcelona, Spain, September
2018.

[20] Nico Golde and Daniel Komaromy. Breaking Band: reverse engineer-
ing and exploiting the shannon baseband. REcon, 2016.

[21] Ismael Gomez-Miguelez, Andres Garcia-Saavedra, Paul D Sutton,
Pablo Serrano, Cristina Cano, and Doug J Leith. srsLTE: An Open-
Source Platform for LTE Evolution and Experimentation. In Proceed-
ings of the 10th ACM International Workshop on Wireless Network
Testbeds, Experimental Evaluation, and Characterization (WiNTECH),
New York City, NY, Oct. 2016.

[22] Felix Gröbert, Carsten Willems, and Thorsten Holz. Automated identifi-
cation of cryptographic primitives in binary programs. In International
Workshop on Recent Advances in Intrusion Detection, pages 41–60.
Springer, 2011.

[23] Willem Hengeveld. IDA processor module for the hexagon
(QDSP6v55) processor. https://github.com/gsmk/hexagon,
2013.

[24] Grant Hernandez, Marius Muench, Dominik Maier, Alyssa Milburn,
Shinjo Park, Tobias Scharnowski, Tyler Tucker, Patrick Traynor, and
Kevin R. B. Butler. FirmWire: Transparent dynamic analysis for
cellular baseband firmware. In Proceedings of the 2022 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
February 2022.

[25] Hex Rays. Findcrypt. https://hex-rays.com/blog/findcrypt/,
2006.

[26] SA Hex-Rays. IDA: Hex-Rays. https://www.hex-rays.com/
products/ida.

[27] Silke Holtmanns, Siddharth Prakash Rao, and Ian Oliver. User Location
Tracking Attacks for LTE Networks Using the Interworking Functional-
ity. In Proceedings of the 15th International Federation for Information
Processing (IFIP) Networking Conference, Vienna, Austria, May. 2016.

[28] Syed Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino.
LTEInspector: A Systematic Approach for Adversarial Testing of 4G
LTE. In Proceedings of the 2018 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, February 2018.

[29] Syed Hussain, Imtiaz Karim, Abdullah Ishtiaq, Omar Chowdhury, and
Elisa Bertino. Noncompliance as Deviant Behavior: An Automated
Black-box Noncompliance Checker for 4G LTE Cellular Devices. In
Proceedings of the 28th ACM Conference on Computer and Communi-
cations Security (CCS), Virtual, November 2021.

[30] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowd-
hury, and Elisa Bertino. 5GReasoner: A Property-Directed Security
and Privacy Analysis Framework for 5G Cellular Network Protocol. In
Proceedings of the 26th ACM Conference on Computer and Communi-
cations Security (CCS), London, UK, November 2019.

[31] Imtiaz Karim, Syed Rafiul Hussain, and Elisa Bertino. ProChecker:
An Automated Security and Privacy Analysis Framework for 4G LTE
Protocol Implementations. In Proceedings of the 41st International
Conference on Distributed Computing Systems (ICDCS), 2021.

[32] Keysight. Anite Application Testing. https://www.keysight.com/
us/en/products/wireless-network-emulators/4g-3g-
2g-device-testing/anite-wireless-solutions/anite-
application-testing.html.

[33] Eunsoo Kim, Dongkwan Kim, CheolJun Park, Insu Yun, and Yongdae
Kim. BaseSpec: Comparative analysis of baseband software and
cellular specifications for L3 protocols. In Proceedings of the 2021
Annual Network and Distributed System Security Symposium (NDSS),
Virtual, February 2021.

[34] Hongil Kim, Dongkwan Kim, Minhee Kwon, Hyungseok Han,
Yeongjin Jang, Dongsu Han, Taesoo Kim, and Yongdae Kim. Break-
ing and Fixing VoLTE: Exploiting Hidden Data Channels and Mis-
implementations. In Proceedings of the 22nd ACM Conference on
Computer and Communications Security (CCS), Denver, CO, October
2015.

[35] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim. Touching the
Untouchables: Dynamic Security Analysis of the LTE Control Plane.
In Proceedings of the 40th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2019.

[36] Sravan Kundojjala. Baseband Market Share Tracker Q2
2021: Qualcomm Leads with 52 Percent Revenue Share.
https://www.strategyanalytics.com/access-services/
components/handset-components/market-data/report-
detail/baseband-market-share-tracker-q2-2021-
qualcomm-leads-with-52-percent-revenue-share.

[37] Chi-Yu Li, Guan-Hua Tu, Chunyi Peng, Zengwen Yuan, Yuanjie Li,
Songwu Lu, and Xinbing Wang. Insecurity of Voice Solution VoLTE in
LTE Mobile Networks. In Proceedings of the 22nd ACM Conference on
Computer and Communications Security (CCS), Denver, CO, October
2015.

[38] Marc Lichtman, Roger Piqueras Jover, Mina Labib, Raghunandan Rao,
Vuk Marojevic, and Jeffrey H Reed. LTE/LTE-A Jamming, Spoofing,
and Sniffing: Threat Assessment and Mitigation. IEEE Communica-
tions Magazine, 54(4):54–61, 2016.

[39] Huang Lin. LTE REDIRECTION: Forcing Targeted LTE Cellphone
into Unsafe Network. In Hack In The Box Security Conference
(HITBSec-Conf), 2016.

[40] H-A Loeliger. An introduction to factor graphs. IEEE Signal Processing
Magazine, 21(1):28–41, 2004.

[41] Dominik Maier, Lukas Seidel, and Shinjo Park. BaseSAFE: Baseband
SAnitized Fuzzing through Emulation. In Proceedings of the 13th
Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec), Virtual, July 2020.

[42] Marc Heuse, Heiko Eißfeld, Andrea Fioraldi, and Dominik Maier.
AFLplusplus (AFL++). https://github.com/vanhauser-thc/
AFLplusplus, 2020.

[43] Benoit Michau and Christophe Devine. How to not break lte crypto.
In ANSSI Symposium sur la sécurité des technologies de l’information
et des communications (SSTIC), 2016.

[44] Collin Mulliner, Nico Golde, and Jean-Pierre Seifert. SMS of Death:
From Analyzing to Attacking Mobile Phones on a Large Scale. In
Proceedings of the 20th USENIX Security Symposium (Security), San
Francisco, CA, August 2011.

[45] Collin Mulliner and Charlie Miller. Fuzzing the Phone in your Phone.
In Black Hat USA Briefings (Black Hat USA), Las Vegas, NV, July
2009.

[46] Navid Nikaein, Raymond Knopp, Florian Kaltenberger, Lionel Gau-
thier, Christian Bonnet, Dominique Nussbaum, and Riadh Ghaddab.
OpenAirInterface: An Open LTE Network in a PC. In Proceedings
of the 20th Annual international conference on Mobile computing and
networking (MobiCom), Maui, Hawaii, September 2014.

[47] LLC Nuand. bladeRF. https://www.nuand.com/bladerf-2-0-
micro/.

USENIX Association 32nd USENIX Security Symposium 3561

https://github.com/gsmk/hexagon
https://hex-rays.com/blog/findcrypt/
https://www.hex-rays.com/products/ida
https://www.hex-rays.com/products/ida
https://www.keysight.com/us/en/products/wireless-network-emulators/4g-3g-2g-device-testing/anite-wireless-solutions/anite-application-testing.html
https://www.keysight.com/us/en/products/wireless-network-emulators/4g-3g-2g-device-testing/anite-wireless-solutions/anite-application-testing.html
https://www.keysight.com/us/en/products/wireless-network-emulators/4g-3g-2g-device-testing/anite-wireless-solutions/anite-application-testing.html
https://www.keysight.com/us/en/products/wireless-network-emulators/4g-3g-2g-device-testing/anite-wireless-solutions/anite-application-testing.html
https://www.strategyanalytics.com/access-services/components/handset-components/market-data/report-detail/baseband-market-share-tracker-q2-2021-qualcomm-leads-with-52-percent-revenue-share
https://www.strategyanalytics.com/access-services/components/handset-components/market-data/report-detail/baseband-market-share-tracker-q2-2021-qualcomm-leads-with-52-percent-revenue-share
https://www.strategyanalytics.com/access-services/components/handset-components/market-data/report-detail/baseband-market-share-tracker-q2-2021-qualcomm-leads-with-52-percent-revenue-share
https://www.strategyanalytics.com/access-services/components/handset-components/market-data/report-detail/baseband-market-share-tracker-q2-2021-qualcomm-leads-with-52-percent-revenue-share
https://github.com/vanhauser-thc/AFLplusplus
https://github.com/vanhauser-thc/AFLplusplus
https://www.nuand.com/bladerf-2-0-micro/
https://www.nuand.com/bladerf-2-0-micro/

[48] CheolJun Park, Sangwook Bae, BeomSeok Oh, Jiho Lee, Eunkyu Lee,
Insu Yun, and Yongdae Kim. DoLTEst: In-depth downlink negative
testing framework for LTE devices. In Proceedings of the 31th USENIX
Security Symposium (Security), Boston, MA, August 2022.

[49] Shinjo Park, Altaf Shaik, Ravishankar Borgaonkar, Andrew Martin,
and Jean-Pierre Seifert. White-Stingray: Evaluating IMSI Catchers
Detection Applications. In Proceedings of the 11th USENIX Workshop
on Offensive Technologies (WOOT), Vancouver, Canada, August 2017.

[50] David A Ramos and Dawson Engler. Under-Constrained Symbolic
Execution: Correctness Checking for Real Code. In Proceedings of the
24th USENIX Security Symposium (Security), Washington, DC, August
2015.

[51] Muhammad Taqi Raza, Fatima Muhammad Anwar, and Songwu Lu.
Exposing LTE Security Weaknesses at Protocol Inter-Layer, and Inter-
Radio Interactions. In International Conference on Security and Pri-
vacy in Communication Systems, pages 312–338. Springer, 2017.

[52] David Rupprecht, Kai Jansen, and Christina Pöpper. Putting LTE Secu-
rity Functions to the Test: A Framework to Evaluate Implementation
Correctness. In Proceedings of the 25th USENIX Security Symposium
(Security), Austin, TX, August 2016.

[53] David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina Pöp-
per. Breaking LTE on Layer Two. In Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland), San Francisco, CA,
May 2019.

[54] Altaf Shaik, Ravishankar Borgaonkar, N Asokan, Valtteri Niemi, and
Jean-Pierre Seifert. Practical Attacks Against Privacy and Availability
in 4G/LTE Mobile Communication Systems. In Proceedings of the
2016 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2016.

[55] Altaf Shaik, Ravishankar Borgaonkar, Shinjo Park, and Jean-Pierre
Seifert. New vulnerabilities in 4G and 5G cellular access network
protocols: exposing device capabilities. In Proceedings of the 12th
Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec), Miami, FL, May 2019.

[56] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. Firmalice-automatic detection of authen-
tication bypass vulnerabilities in binary firmware. In Proceedings of
the 2015 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2015.

[57] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis. In Proceedings
of the 37th IEEE Symposium on Security and Privacy (Oakland), San
Jose, CA, May 2016.

[58] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke.
Networkit: A tool suite for large-scale complex network analysis, 2014.

[59] Fabian Van Den Broek, Brinio Hond, and Arturo Cedillo Torres. Se-
curity Testing of GSM Implementations. In International Symposium
on Engineering Secure Software and Systems (ESSoS), pages 179–195.
Springer, 2014.

[60] Ralf-Philipp. Weinmann. Baseband Attacks: Remote Exploitation of
Memory Corruptions in Cellular Protocol Stacks. In Proceedings of the
6th USENIX Workshop on Offensive Technologies (WOOT), Bellevue,
WA, August 2012.

[61] Ralf-Philipp. Weinmann. Baseband exploitation in 2013: Hexagon
challenges. In PACSEC 2013, Tokyo, Japan, 2013.

[62] Ben Wojtowicz. OpenLTE. An open source 3GPP LTE implementation,
2016.

[63] Hojoon Yang, Sangwook Bae, Mincheol Son, Hongil Kim, Song Min
Kim, and Yongdae Kim. Hiding in Plain Signal: Physical Signal
Overshadowing Attack on LTE. In Proceedings of the 28th USENIX
Security Symposium (Security), Santa Clara, CA, August 2019.

[64] Jonathan S Yedidia, William Freeman, and Yair Weiss. Generalized
belief propagation. Advances in neural information processing systems,
13, 2000.

[65] Chuan Yu and Shuhui Chen. On effects of mobility management sig-
nalling based dos attacks against lte terminals. In 2019 IEEE 38th
International Performance Computing and Communications Confer-
ence (IPCCC), 2019.

[66] Jonas Zaddach, Luca Bruno, Aurelien Francillon, Davide Balzarotti,
et al. AVATAR: A Framework to Support Dynamic Security Anal-
ysis of Embedded Systems’ Firmwares. In Proceedings of the 2014
Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, February 2014.

[67] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee,
Yonghwi Kwon, Yousra Aafer, and Xiangyu Zhang. Osprey: Recovery
of variable and data structure via probabilistic analysis for stripped
binary. In Proceedings of the 42nd IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, May 2021.

[68] Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon,
and Xiangyu Zhang. Bda: practical dependence analysis for binary
executables by unbiased whole-program path sampling and per-path
abstract interpretation. In Proceedings of the 2019 Annual ACM Con-
ference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Athens, Greece, October 2019.

3562 32nd USENIX Security Symposium USENIX Association

Table A1: The list of firmware images used for evaluating BASECOMP.
Vendor Arch Nick Model Version Date

Samsung

ARM G950 Galaxy S8 G950NKOU5DUC1 Apr/2021
ARM G955 Galaxy S8+ G955NKOU5DUC1 Apr/2021
ARM G960 Galaxy S9 G960NKOU5FUJ1 Oct/2021
ARM G965 Galaxy S9+ G965NKOU5FUJ1 Oct/2021
ARM G970 Galaxy S10e G970NKOS7FUJ1 Oct/2021
ARM G975 Galaxy S10+ G975NKOS7FUJ1 Oct/2021
ARM G977 Galaxy S10 5G G977NKOS6FUJ2 Nov/2021
ARM G991 Galaxy S21 5G G991NKOU3BUKF Nov/2021
ARM G996 Galaxy S21+ 5G G996NKOU3BUKF Nov/2021
ARM G998 Galaxy S21 Ultra 5G G998NKOU3BUKF Nov/2021

MediaTek
ARM Pro 7 MEIZU Pro 7 MOLY.LR11.W1630.MD.MP.V17.P48 Sep/2017
MIPS A31 Galaxy A31 MOLY.LR12A.R3.TC10.6M.PR.KR.SP.V2.P29 Dec/2021
MIPS A31 (Latest) Galaxy A31 MOLY.LR12A.R3.TC10.6M.PR.KR.SP.V3.P32 Feb/2023
MIPS A03s Galaxy A03s MOLY.LR12A.R3.TC10.6M.A03S.NA.PR.SP.V3.T1212 Feb/2023
MIPS A145 Galaxy A145 MOLY.LR12A.R3.TC10.6M.A14.PR.SP.V1.P5 Feb/2023

srsRAN x86 srsran - 22.04.1 Aug/2022

A Acronyms

3GPP Third Generation Partnership Project
AKA Authentication and Key Agreement
AP Application Processor
BP Baseband Processor
EMM EPS Mobility Management
GUTI Globally Unique Temporary Identity
IE Information Element
IMEI International Mobile Equipment Identity
IMEISV IMEI with Software Version
IMSI International Mobile Subscriber Identity
MAC Message Authentication Code
MitM Man-in-the-Middle
MME Mobility Management Entity
NAS Non Access Stratum
RRC Radio Resource Control
SIM Subscriber Identity Module

B Dataset

Table A1 shows a list of firmware binaries used for evaluation.
We describe each column as follows. The "Vendor", "Arch"
and "Model" columns are literally the vendor, arch and model
of the firmware. To label the firmwares in an easier way, we
use the names in the column "Nick". The "Version" and "Date"
columns indicate the name and the release date of the version
we used. Lastly for srsRAN, as it is an open-source project,
we only use it release date of the version used is denoted.

Table A2 shows the lines of code for vendor- and model-
specific files. Due to the space limit, we omitted its detail,
but BASECOMP also has a yaml configuration file for vendors.

This file contains several pieces of information for analysis,
including the location of Python-based analysis module and
the firmware’s architecture.

Table A2: Lines of code for vendor- and model-specific files.
Vendor Arch Model LoC (Vendor) LoC (Model)

Samsung ARM

G950

14 (Python)
8 (yaml)

10
G955 10
G960 11
G965 11
G970 11
G975 11
G977 11
G991 11
G996 11
G998 11

MediaTek
ARM P25 18 (Python)

7 (yaml) 12

MIPS
A31

26 (Python)
7 (yaml)

13
A31 (Latest) 13
A03s 12
A145 13

srsRAN ARM - 15 (Python)
7 (yaml) 10

USENIX Association 32nd USENIX Security Symposium 3563

	Introduction
	Background
	Cellular Network Architecture
	Baseband Processor and Software
	Protocol Messages and Processing Logic
	Security Features and Message Structures
	Probabilistic Inference

	Motivations
	Limitations of Dynamic Testing
	Limitations of [0.5]BaseSpec: No Analysis for Logic Bugs
	Limitations of Manual Analysis

	Overview
	Workflow
	Scope of This Work
	Threat Model

	Design
	Probabilistic Inference for Integrity Protection Function
	Gathering Information from Firmware for Symbolic Analysis
	Symbolically Analyze Integrity Protection Following Specification

	Implementation
	Evaluation
	Evaluation Setup
	Identifying Integrity Protection
	Analyzing Integrity Protection
	Comparison to Dynamic Testing
	Performance Evaluation

	Security Analysis and Case Study
	NAS AKA Bypass Vulnerability (E4)
	Mishandling of Plain Messages (E5 – E11)
	Security analysis for srsRAN

	Discussion & Limitations
	Related work
	Conclusion
	Acknowledgment
	Acronyms
	Dataset

