
Automated Attack Synthesis
for Constant Product Market Makers

Sujin Han, Jinseo Kim, Sung-Ju Lee, Insu Yun

ACM SIGSOFT ISSTA

June 27, 2025

Decentralized Finance (DeFi)

● Financial ecosystem powered by blockchains
● Scope: DeFi on EVM-based blockchains

○ Ethereum
○ Binance Smart Chain

● No central intermediaries → trust is encoded in smart contract code
● Provides new financial services not possible in traditional centralized finance

2

Building Blocks of DeFi

3

ERC20 Tokens

● Standard for fungible tokens on EVM-based chains
● Implements interfaces like transfer()and balanceOf()
● Enables interoperability between various tokens with financial services

(ex. DEX)

Decentralized Exchanges (DEX)

● Smart-contract-based market for exchanging tokens
● Popular model: Constant Product Market Maker (CPMM)

Constant Product Market Makers (CPMM)

● Model adopted by major DEXes (ex. Uniswap , PancakeSwap)
● Maintain reserves of two tokens: X and Y
● Enforce invariant:

4

Swap X to Y Swap Y to X

CPMM DEXes are often targets of exploits

● CPMM DEXes store billions in assets (as of June 2025)
○ Uniswap TVL: $5.2 billion
○ PancakeSwap TVL: $1.8 billion

● Token behavior incompatible with the CPMM model can be exploited to
drain tokens from DEX

● Real-world incidents are frequent and severe:
○ 138 CPMM DEX exploits reported by BlockSec in Feb 2023 alone
○ ThoreumFi-BNB (January 2023) - $580K stolen

5

Many tools have been suggested to detect DeFi bugs

6

General-Purpose Vulnerability Detectors

● Echidna (Grieco et al.)
○ Grammar-based fuzzing
○ Uses static analysis (Slither) to guide input generation

● ItyFuzz (Shou et al.)
○ Snapshot-based fuzzing
○ Leverages dataflow and comparison waypoints

Specialized Tools

● DeFiTainter (Kong et al.)
○ Taint analysis
○ Focused on price manipulation vulnerabilities

Detecting CPMM-incompatible behavior is challenging

Motivating Example: ANCH Exploit

Loss: ~$20K

Incompatible Behavior

● ANCH rewarded 0.05% of transfer amount
every time when transferring to/from DEX

7

Simplified ANCH code

Exploit

● Loop transfers to gain a significant amount of
ANCH reward tokens for free

● Drain stablecoin from CPMM DEX trading
ANCH tokens

Detecting CPMM-incompatible behavior is challenging

● Not all reward mechanisms break CPMM
→ hard to design a one-size-fits-all oracle

● Need concrete exploit traces (i.e.,
profitable transaction) to confirm issues

● Tools like Echidna and ItyFuzz aim to
maximize coverage → likely to miss
exploits that require repetitions

8

ANCH exploit without repetition (left)
and with repetition (right)

How can we reliably detect CPMM bugs on blockchains?

● Formally defined CPMM composability bugs
● Identify two invariants that, when broken, can lead to token drain
● Propose CPMMX that can automatically detect CPMM composability bugs

○ Employs a novel approach shallow-then-deep search to efficiently identify vulnerable contracts
across entire blockchains

○ Generates end-to-end exploits (no false positives!)

9

Defining CPMM Composability Bugs (CPMM Bugs)

10

● Consider X token, Y token and a CPMM trading them

→ Such flaws can be categorized into two types

Benign: Swap X to Y Benign: Swap Y to X

● A CPMM composability bug is a flaw in the Y token contract that lets an
attacker illegitimately extract X tokens from the CPMM

Malicious: Swap Y to X

● Flaw in Y token lets attacker remove Y tokens from CPMM
● This shifts the curve inward → Y price rises
● Attacker gets more X tokens for the same amount of Y tokens

Type 1: DEX Y Token Balance Decrease

11

Invariant 1. Users should not be able to remove tokens in CPMM.

Type 2: Attacker Y Token Balance Increase

● Flaw in Y token lets attacker obtain Y tokens for free
● Attacker uses Y tokens to drain more X tokens from CPMM

12

Invariant 2. Users should not be able to obtain tokens traded in CPMM for free.

CPMMX: CPMM eXploiter

● Based on previous findings, we built a tool that automatically detects CPMM
bugs across entire blockchains

13

① Target Contract Identification

● Given a list of CPMM contracts, CPMMX filters contracts that meet the
following criteria:

○ One of the traded tokens is a well-known coin (ex. WETH, USDT)
○ CPMM contains over $1,000 worth of well-known coin

● Ex. CPMM contract trading USDT and TestToken
○ Balance: (10,000 USDT, 200,000 TestToken)

14

② Shallow Search for Finding Invariant Breaking Transactions

● Generates test cases likely to break invariants

15

Test Case Format

Swap
USDT → TestToken

Swap
TestToken → USDT

Function
Call 1

Function
Call 2

Function
Call N

Generated based on templates

…

Generating Test Cases in Shallow Search

● Observed that many CPMM-incompatible behavior stem from incentive
mechanisms in tokens

○ Rewards
○ Fees
○ Burn (remove tokens from circulation)

16

● Designed templates likely to
trigger such mechanisms

○ Cross-trading: circular token
transfers that may activate
incentive logic

○ Burn: function calls with burn
in the name

Templates for generation test cases

Generating Test Cases in Shallow Search

● If no invariant-breaking transaction found, integrate state changing calls:
○ small amount transfers (ex. transfer(1))
○ non-view, no-argument function calls (ex. distributeFee())

17

Test Case Format

Swap
USDT → TestToken

Swap
TestToken → USDT

Function
Call 1

Function
Call 2

Function
Call N…

State
Changing Call

Insert

Shallow Search for Finding Invariant Breaking Transactions

18

● Run test cases in instrumented EVM to check for invariant violations & profit
● Three possible outcomes:

1. Profit → early termination (vulnerable)
2. Invariant violation but no profit → proceed to deep search
3. No invariant violation and no profit → early termination (not vulnerable)

Test Case Format

Swap
USDT → TestToken

Swap
TestToken → USDT

Function
Call 1

Function
Call 2

Function
Call N

Generated based on templates

…

Invariant
broken? 👀

Profit
generated? 👀

③ Deep Search for Generating Profitable Transactions

● Enter deep search phase if CPMMX found only invariant-breaking test cases
● Generates test cases by repeating invariant-breaking call sequences and

check for profit

19

● Decide on which test case to prioritize based on final stablecoin balance
1. Balance increases → keep increasing repetitions
2. Balance decreases → limit repetitions, but keep test case
3. No change after increasing repetitions 3 times → discard test case

Test Case Format

Swap
USDT → TestToken

Swap
TestToken → USDT

Function
Call 1

Function
Call 2

Function
Call N

…

Profit
generated? 👀Repeat N times

Evaluation

RQ1. How effective is CPMMX at detecting CPMM bugs?

RQ2. How efficient is CPMMX at detecting CPMM bugs?

RQ3. How significant are the techniques applied to CPMMX?

RQ4. How effective is CPMMX at detecting undiscovered CPMM bugs in the real
world?

20

Experimental Setup

21

Baselines

Tool Multi-Contract Support Methodology

ItyFuzz ✓ Fuzzing

Echidna ✓ Fuzzing

DeFiTainter* ✓ Taint analysis

Mythril ✗ Symbolic execution

Slither ✗ Static analysis

*DeFiTainter targets price manipulation bugs while other tools provide more
general/configurable oracles

Experimental Setup

Datasets

1. DeFiHackLabs

23 CPMM bugs manually selected from DeFiHackLabs

2. BlockSec

124 CPMM bugs reported by BlockSec (Invariant 1 violations)

3. RealWorld-BSC

122* vulnerable tokens (BlockSec) + 122 benign tokens

*Excluded two tokens on Ethereum

22

● Outperformed baselines in recall by 2.5x for DeFiHackLabs dataset by 1.5x
for BlockSec dataset

RQ1. Effectiveness in Detecting CPMM Bugs

23

Table 1. CPMM composability bug detection rate of CPMMX and baselines
on the DeFiHackLabs and BlockSec datasets.

RQ2. Efficiency in Detecting CPMM Bugs

● Achieved top F1 score of 0.97 with
zero false positives

● Detected most bugs in the least
time at only ~14% of the next best
time – thanks to fewest number of
timeouts

→ Highlights the scalability benefits of a
bug-specific detection tool

24

Table 2. Performance metrics and
running times of CPMMX and
baseline on RealWorld-BSC

*Ran with 20 minute timeout

RQ4. Detecting CPMM Bugs in the Real World

● Deployed CPMMX on Ethereum and Binance Smart Chain
○ Analyzed all UniswapV2 and PancakeSwap contracts
○ As of Oct 2024: ~371K (ETH) / ~1.7M (BSC) contracts
○ After coin-balance filtering: ~19K / ~29K tested via shallow-then-deep search
○ Large scale evaluation enabled by early termination

● Discovered 26 new bugs that can extract $15.7K worth of stablecoins
○ Top 3 potential losses: $4,796 / $4,359 / $3,576
○ Average loss: $603

● Tried to contact token maintainers but got no response

25

Discussion

● Lack of a safe and ethical way to report vulnerabilities in smart contracts if
maintainers are uncooperative

○ Public disclosure can cause direct financial harm to token holders

● Efficiency vs. generalizability tradeoff
○ CPMMX is effective but does not detect other vulnerabilities
○ CPMMX also misses some CPMM bugs that do not conform to its templates

26

Summary
● Formalized CPMM composability bugs and identified two safety invariants
● Propose CPMMX that can automatically detect CPMM composability bugs across

entire blockchains without false positives
● CPMMX identified 26 previously undiscovered vulnerabilities with total loss $15.7K

27

Thank you! Please reach out if you have any questions sujinhan@kaist.ac.kr
Code available at https://github.com/kaist-hacking/CPMMX

mailto:sujinhan@kaist.ac.kr
https://github.com/kaist-hacking/CPMMX

