
FirmState: Bringing Cellular Protocol 
States to Shannon Baseband Emulation

Suhwan Jeong, Beomseok Oh, Kwangmin Kim, Insu Yun, Yongdae Kim, CheolJun Park

Wisec ‘25



Cellular Baseband
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AP CP

❖Modern smartphones contain multiple specialized processors
• Application Processor (AP) / Communication Processor (CP)
• CP is commonly referred to as 

❖ Baseband
• Handles cellular communication
• Exploded in our lives



Security of Baseband
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❖ Large Attack Surfaces
• Diverse cellular stacks

❖ Implemented in Memory Unsafe Languages
• C / C++

❖ Limited Security Mitigations
• No PIE, No ASLR

❖ Closed source



Previous Research
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❖ Static Analysis [Recon ‘16 / BlackHat USA ‘21 / OffensiveCon ‘23 / Usenix ‘23 / …]

• Complex and time-consuming reverse engineering
• No any pre-processing

❖ Dynamic Analysis (OTA) [Usenix ‘11 / WiMob ‘21 / GLOBECOM ‘22 /…]

• No details about the crash
• Lightweight pre-processing, no false positive 

❖ Dynamic Analysis (Emulation) [S&P 20 / OffensiveCon 20 / NDSS 22 / OffensiveCon 23 / S&P 24]

• Requires a diverse tasks for successful emulation
• Enables direct memory access



FirmWire
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❖ State-of-the-art full-system baseband emulation platform
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Samsung Shannon / MediaTek
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Samsung Shannon / MediaTek Custom code injection
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FirmWire
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Samsung Shannon / MediaTek Custom code injection
GSM – CC / SM
LTE - RRC

❖ State-of-the-art full-system baseband emulation platform

Memory snapshot



FirmWire
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❖ Limitation: can not support the network communication



Challenge [C1]: Complex State Configuration
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❖ Protocol states
• Fundamental to how baseband works (different states = different behaviors)
• Drastically change during cellular network communication

Network 
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Alter 
Protocol States

State 2
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State-Driven Execution



Challenge [C1]: Complex State Configuration
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❖ Protocol states
• Fundamental to how baseband works (different states = different behaviors)
• Drastically change during cellular network communication

❖Main challenges of state configuration
1. Complex specifications (1000+ page documents)
2. Memory-level state representation

Network 
Communication

Alter 
Protocol States

LTE RRC Spec. (1165p)

State 2

State 1

State-Driven Execution



Challenge [C2]: Control Flow Visibility
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❖ Limited visibility into network-related execution flows
• FirmWire provides execution logs, only if the proper harness exists
• Circular dependency problem

Harness 
Generation

Execution
Flows

Circular Dependency

UsesUses



Challenge [C2]: Control Flow Visibility

7

❖ Limited visibility into network-related execution flows
• FirmWire provides execution logs, only if the proper harness exists
• Circular dependency problem

❖Main challenges
• Complex harness implementation
• No reliable ground-truth

Harness 
Generation

Execution
Flows

UsesUses

Circular Dependency



Our Approach [A1]: Runtime State Extraction
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❖ Key Insight: Extract protocol states from real devices
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❖ Key Insight: Extract protocol states from real devices

USRP

Device

srsRAN

State Configuration



Our Approach [A1]: Runtime State Extraction

8

Force Crash

❖ Key Insight: Extract protocol states from real devices

USRP

Device

srsRAN

State Configuration



Our Approach [A1]: Runtime State Extraction

8

USRP

Device
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❖ Key Insight: Extract protocol states from real devices



Our Approach [A1]: Runtime State Extraction
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Force Crash
State Information

Memory dump

❖ Key Insight: Extract protocol states from real devices

USRP

Device

srsRAN

State Configuration



Our Approach [A2]: Control Flow Recovery
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❖ Back Trace Log (BTL)
• Diverse information of real execution flow is encoded 



Our Approach [A2]: Control Flow Recovery
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❖ Back Trace Log (BTL)
• Diverse information of real execution flow is encoded 

Support for 4 distinct BTL format versions (~S24)



Overview – FirmState
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❖ State-aware methodology enhancing Shannon baseband emulation
• https://github.com/1nteger-c/FirmState
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Device state transition
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Phase 1: Device State Transition
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Device state transition

Post-AKA

Pre-AKA

❖ Controlled testbed enables precise baseband state manipulation
• Controls network conditions and protocol message sequences
• Can reach target protocol states

❖ Implementation based on open-source infrastructure
• srsRAN 4G, USRP B200

Device

post-AKA Message

AKA procedure

post-AKA state

Network



Phase 2: Runtime Information Management
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❖ FirmState correlates two critical data sources
• BTL file analysis: Understanding actual control flow execution
• Memory dump processing: Extract state information
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Implementation
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❖ Snapshot-Patching Procedure: state application
• Seamless integration with FirmWire's snapshot system

❖ Support pre/post-AKA states
• Higher protocol coverage at RRC & fidelity

❖ Newly support LTE NAS

Snapshot-Patching Procedure

Snapshot

GDB script



Evaluation [1] - Fuzzer Performance
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❖ Comparison with FirmWire baseline
• 24-hour evaluation periods with 3 independent runs
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❖ Comparison with FirmWire baseline
• 24-hour evaluation periods with 3 independent runs

❖ Significant Coverage Improvements 
• RRC: 7.5% coverage (2.7× improvement over FirmWire's 2.8%) 
• NAS: 4.5%-9.2% coverage (previously unsupported) 
• Two 1-day vulnerabilities discovered in different protocol states



Evaluation [2] - Root Cause Analysis
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❖ Proper emulation directly results to root cause analysis
• Instruction Trace Analysis (QEMU)
• Debugging (GDB)

❖ Vulnerability Details
• Pre-AKA: Integer underflow in buffer copying mechanism
• Post-AKA: Infinite loop in Emergency Number List parsing

Infinity loop in decoding EmergencyNumberList
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❖ Proper emulation directly results to root cause analysis
• Instruction Trace Analysis (QEMU)
• Debugging (GDB)

❖ Vulnerability Details
• Pre-AKA: Integer underflow in buffer copying mechanism
• Post-AKA: Infinite loop in Emergency Number List parsing

Infinity loop in decoding EmergencyNumberList

Length of Emergency Number List

Length of 1st Emergency Number

Data 1

Length of 2nd Emergency Number

Data 2

Done

idx = 0

idx = 256



Related Works
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❖ Bridging the Gap between Emulation and Over-The-Air Testing for Cellular Baseband Firmware 
• Uses memory dumps for state restoration

❖ Stateful Analysis and Fuzzing of Commercial Baseband Firmware
• Uses symbolic analysis for state restoration
• Extends FirmWire for newer Shannon baseband

IEEE S&P 2025



Conclusion
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❖ FirmState enables state-aware Shannon baseband emulation
• Improves code coverage (x2.7) & fidelity
• Enables previously unsupported NAS layer emulation
• Discovered two 1day vulnerabilities

❖ Contact Information:
• Suhwan Jeong (shjeong.b@enki.co.kr)
• GitHub Repository: https://github.com/1nteger-c/FirmState

❖ ENKI WhiteHat (Offensive Security Research)
❖ KAIST SysSec Lab (Prof. Yongdae Kim)

GitHub Repo.

mailto:shjeong.b@enki.co.kr
https://github.com/1nteger-c/FirmState
https://github.com/1nteger-c/FirmState
https://github.com/1nteger-c/FirmState
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