
FirmState: Bringing Cellular Protocol 
States to Shannon Baseband Emulation

Suhwan Jeong, Beomseok Oh, Kwangmin Kim, Insu Yun, Yongdae Kim, CheolJun Park

Wisec ‘25



Cellular Baseband

2

AP CP

❖Modern smartphones contain multiple specialized processors
• Application Processor (AP) / Communication Processor (CP)
• CP is commonly referred to as 

❖ Baseband
• Handles cellular communication
• Exploded in our lives



Security of Baseband

3

❖ Large Attack Surfaces
• Diverse cellular stacks

❖ Implemented in Memory Unsafe Languages
• C / C++

❖ Limited Security Mitigations
• No PIE, No ASLR

❖ Closed source



Previous Research

4

❖ Static Analysis [Recon ‘16 / BlackHat USA ‘21 / OffensiveCon ‘23 / Usenix ‘23 / …]

• Complex and time-consuming reverse engineering
• No any pre-processing

❖ Dynamic Analysis (OTA) [Usenix ‘11 / WiMob ‘21 / GLOBECOM ‘22 /…]

• No details about the crash
• Lightweight pre-processing, no false positive 

❖ Dynamic Analysis (Emulation) [S&P 20 / OffensiveCon 20 / NDSS 22 / OffensiveCon 23 / S&P 24]

• Requires a diverse tasks for successful emulation
• Enables direct memory access



FirmWire

5

❖ State-of-the-art full-system baseband emulation platform



FirmWire

5

Samsung Shannon / MediaTek

❖ State-of-the-art full-system baseband emulation platform



FirmWire

5

Samsung Shannon / MediaTek

Memory snapshot

❖ State-of-the-art full-system baseband emulation platform



FirmWire

5

Samsung Shannon / MediaTek Custom code injection

❖ State-of-the-art full-system baseband emulation platform

Memory snapshot



FirmWire

5

Samsung Shannon / MediaTek Custom code injection
GSM – CC / SM
LTE - RRC

❖ State-of-the-art full-system baseband emulation platform

Memory snapshot



FirmWire

5

❖ Limitation: can not support the network communication



Challenge [C1]: Complex State Configuration

6

❖ Protocol states
• Fundamental to how baseband works (different states = different behaviors)
• Drastically change during cellular network communication

Network 
Communication

Alter 
Protocol States

State 2

State 1

State-Driven Execution



Challenge [C1]: Complex State Configuration

6

❖ Protocol states
• Fundamental to how baseband works (different states = different behaviors)
• Drastically change during cellular network communication

❖Main challenges of state configuration
1. Complex specifications (1000+ page documents)
2. Memory-level state representation

Network 
Communication

Alter 
Protocol States

LTE RRC Spec. (1165p)

State 2

State 1

State-Driven Execution



Challenge [C2]: Control Flow Visibility

7

❖ Limited visibility into network-related execution flows
• FirmWire provides execution logs, only if the proper harness exists
• Circular dependency problem

Harness 
Generation

Execution
Flows

Circular Dependency

UsesUses



Challenge [C2]: Control Flow Visibility

7

❖ Limited visibility into network-related execution flows
• FirmWire provides execution logs, only if the proper harness exists
• Circular dependency problem

❖Main challenges
• Complex harness implementation
• No reliable ground-truth

Harness 
Generation

Execution
Flows

UsesUses

Circular Dependency



Our Approach [A1]: Runtime State Extraction

8

❖ Key Insight: Extract protocol states from real devices



Our Approach [A1]: Runtime State Extraction

8

❖ Key Insight: Extract protocol states from real devices

USRP

Device

srsRAN

State Configuration



Our Approach [A1]: Runtime State Extraction

8

Force Crash

❖ Key Insight: Extract protocol states from real devices

USRP

Device

srsRAN

State Configuration



Our Approach [A1]: Runtime State Extraction

8

USRP

Device

srsRAN

State Configuration Force Crash

Memory dump

❖ Key Insight: Extract protocol states from real devices



Our Approach [A1]: Runtime State Extraction

8

Force Crash
State Information

Memory dump

❖ Key Insight: Extract protocol states from real devices

USRP

Device

srsRAN

State Configuration



Our Approach [A2]: Control Flow Recovery

9

❖ Back Trace Log (BTL)
• Diverse information of real execution flow is encoded 



Our Approach [A2]: Control Flow Recovery

9

❖ Back Trace Log (BTL)
• Diverse information of real execution flow is encoded 

Support for 4 distinct BTL format versions (~S24)



Overview – FirmState

10

❖ State-aware methodology enhancing Shannon baseband emulation
• https://github.com/1nteger-c/FirmState

Device state transition

42 54 4C 3A
F0 FF FF 01
31 31 30 30

INIT_REQ
EMMServ

IMEISV

01000111
11001100
10010101

101011

FirmWire
Snapshot patching

⋮
0x100814: 66
0x100815: 23
0x100816: 03
0x100817: 79

⋮

0x100814: 66
0x100816: 03
0x100817: 79

Runtime information management

State 2
State 1

State-Aware Emulation

RRC

NASPost-AKA

Pre-AKA



Overview – FirmState

10

Device state transition

42 54 4C 3A
F0 FF FF 01
31 31 30 30

INIT_REQ
EMMServ

IMEISV

01000111
11001100
10010101

101011

FirmWire
Snapshot patching

⋮
0x100814: 66
0x100815: 23
0x100816: 03
0x100817: 79

⋮

0x100814: 66
0x100816: 03
0x100817: 79

Runtime information management

State 2
State 1

State-Aware Emulation

RRC

NASPost-AKA

Pre-AKA



Overview – FirmState

10

Device state transition

42 54 4C 3A
F0 FF FF 01
31 31 30 30

INIT_REQ
EMMServ

IMEISV

01000111
11001100
10010101

101011

FirmWire
Snapshot patching

⋮
0x100814: 66
0x100815: 23
0x100816: 03
0x100817: 79

⋮

0x100814: 66
0x100816: 03
0x100817: 79

Runtime information management

State 2
State 1

State-Aware Emulation

RRC

NASPost-AKA

Pre-AKA

Control flow recovery from BTL 

State extraction from memory dump



Overview – FirmState

10

Device state transition

42 54 4C 3A
F0 FF FF 01
31 31 30 30

INIT_REQ
EMMServ

IMEISV

01000111
11001100
10010101

101011

FirmWire
Snapshot patching

⋮
0x100814: 66
0x100815: 23
0x100816: 03
0x100817: 79

⋮

0x100814: 66
0x100816: 03
0x100817: 79

Runtime information management

State 2
State 1

State-Aware Emulation

RRC

NASPost-AKA

Pre-AKA

Harness implementation with recovered control-flow

Apply the state variables in the snapshot



Phase 1: Device State Transition

11

Device state transition

Post-AKA

Pre-AKA

❖ Controlled testbed enables precise baseband state manipulation
• Controls network conditions and protocol message sequences
• Can reach target protocol states

❖ Implementation based on open-source infrastructure
• srsRAN 4G, USRP B200

Device

post-AKA Message

AKA procedure

post-AKA state

Network



Phase 2: Runtime Information Management

12

❖ FirmState correlates two critical data sources
• BTL file analysis: Understanding actual control flow execution
• Memory dump processing: Extract state information

42 54 4C 3A
F0 FF FF 01
31 31 30 30

INIT_REQ
EMMServ

IMEISV

01000111
11001100
10010101

101011

⋮
0x100814: 66
0x100815: 23
0x100816: 03
0x100817: 79

⋮

State 2
State 1



Implementation

13

❖ Snapshot-Patching Procedure: state application
• Seamless integration with FirmWire's snapshot system

❖ Support pre/post-AKA states
• Higher protocol coverage at RRC & fidelity

❖ Newly support LTE NAS

Snapshot-Patching Procedure

Snapshot

GDB script



Evaluation [1] - Fuzzer Performance

14

❖ Comparison with FirmWire baseline
• 24-hour evaluation periods with 3 independent runs



Evaluation [1] - Fuzzer Performance

14

❖ Comparison with FirmWire baseline
• 24-hour evaluation periods with 3 independent runs

❖ Significant Coverage Improvements 
• RRC: 7.5% coverage (2.7× improvement over FirmWire's 2.8%) 
• NAS: 4.5%-9.2% coverage (previously unsupported) 
• Two 1-day vulnerabilities discovered in different protocol states



Evaluation [2] - Root Cause Analysis

15

❖ Proper emulation directly results to root cause analysis
• Instruction Trace Analysis (QEMU)
• Debugging (GDB)

❖ Vulnerability Details
• Pre-AKA: Integer underflow in buffer copying mechanism
• Post-AKA: Infinite loop in Emergency Number List parsing

Infinity loop in decoding EmergencyNumberList



Evaluation [2] - Root Cause Analysis

15

❖ Proper emulation directly results to root cause analysis
• Instruction Trace Analysis (QEMU)
• Debugging (GDB)

❖ Vulnerability Details
• Pre-AKA: Integer underflow in buffer copying mechanism
• Post-AKA: Infinite loop in Emergency Number List parsing

Infinity loop in decoding EmergencyNumberList

Length of Emergency Number List

Length of 1st Emergency Number

Data 1

Length of 2nd Emergency Number

Data 2

Done



Evaluation [2] - Root Cause Analysis

16

❖ Proper emulation directly results to root cause analysis
• Instruction Trace Analysis (QEMU)
• Debugging (GDB)

❖ Vulnerability Details
• Pre-AKA: Integer underflow in buffer copying mechanism
• Post-AKA: Infinite loop in Emergency Number List parsing

Infinity loop in decoding EmergencyNumberList

Length of Emergency Number List

Length of 1st Emergency Number

Data 1

Length of 2nd Emergency Number

Data 2

Done
idx = 256



Evaluation [2] - Root Cause Analysis

16

❖ Proper emulation directly results to root cause analysis
• Instruction Trace Analysis (QEMU)
• Debugging (GDB)

❖ Vulnerability Details
• Pre-AKA: Integer underflow in buffer copying mechanism
• Post-AKA: Infinite loop in Emergency Number List parsing

Infinity loop in decoding EmergencyNumberList

Length of Emergency Number List

Length of 1st Emergency Number

Data 1

Length of 2nd Emergency Number

Data 2

Done

idx = 0

idx = 256



Related Works

17

❖ Bridging the Gap between Emulation and Over-The-Air Testing for Cellular Baseband Firmware 
• Uses memory dumps for state restoration

❖ Stateful Analysis and Fuzzing of Commercial Baseband Firmware
• Uses symbolic analysis for state restoration
• Extends FirmWire for newer Shannon baseband

IEEE S&P 2025



Conclusion

18

❖ FirmState enables state-aware Shannon baseband emulation
• Improves code coverage (x2.7) & fidelity
• Enables previously unsupported NAS layer emulation
• Discovered two 1day vulnerabilities

❖ Contact Information:
• Suhwan Jeong (shjeong.b@enki.co.kr)
• GitHub Repository: https://github.com/1nteger-c/FirmState

❖ ENKI WhiteHat (Offensive Security Research)
❖ KAIST SysSec Lab (Prof. Yongdae Kim)

GitHub Repo.

mailto:shjeong.b@enki.co.kr
https://github.com/1nteger-c/FirmState
https://github.com/1nteger-c/FirmState
https://github.com/1nteger-c/FirmState

	Slide 1: FirmState: Bringing Cellular Protocol States to Shannon Baseband Emulation
	Slide 2: Cellular Baseband
	Slide 3: Security of Baseband
	Slide 4: Previous Research 
	Slide 5: FirmWire
	Slide 6: FirmWire
	Slide 7: FirmWire
	Slide 8: FirmWire
	Slide 9: FirmWire
	Slide 10: FirmWire
	Slide 11: Challenge [C1]: Complex State Configuration
	Slide 12: Challenge [C1]: Complex State Configuration
	Slide 13: Challenge [C2]: Control Flow Visibility
	Slide 14: Challenge [C2]: Control Flow Visibility
	Slide 15: Our Approach [A1]: Runtime State Extraction
	Slide 16: Our Approach [A1]: Runtime State Extraction
	Slide 17: Our Approach [A1]: Runtime State Extraction
	Slide 18: Our Approach [A1]: Runtime State Extraction
	Slide 19: Our Approach [A1]: Runtime State Extraction
	Slide 20: Our Approach [A2]: Control Flow Recovery
	Slide 21: Our Approach [A2]: Control Flow Recovery
	Slide 22: Overview – FirmState
	Slide 23: Overview – FirmState
	Slide 24: Overview – FirmState
	Slide 25: Overview – FirmState
	Slide 26: Phase 1: Device State Transition
	Slide 27: Phase 2: Runtime Information Management
	Slide 28: Implementation
	Slide 29: Evaluation [1] - Fuzzer Performance
	Slide 30: Evaluation [1] - Fuzzer Performance
	Slide 31: Evaluation [2] - Root Cause Analysis
	Slide 32: Evaluation [2] - Root Cause Analysis
	Slide 33: Evaluation [2] - Root Cause Analysis
	Slide 34: Evaluation [2] - Root Cause Analysis
	Slide 35: Related Works
	Slide 36: Conclusion

