
FirmState: Bringing Cellular Protocol States to Shannon
Baseband Emulation

Suhwan Jeong
shjeong.b@enki.co.kr

ENKI WhiteHat
Seoul, Republic of Korea

Beomseok Oh
beomseoko@kaist.ac.kr

KAIST
Daejeon, Republic of Korea

Kwangmin Kim
kwangmin.kim@kaist.ac.kr

KAIST
Daejeon, Republic of Korea

Insu Yun
insuyun@kaist.ac.kr

KAIST
Daejeon, Republic of Korea

Yongdae Kim
yongdaek@kaist.ac.kr

KAIST
Daejeon, Republic of Korea

CheolJun Park
cheoljunp@khu.ac.kr
Kyung Hee University

Yongin, Republic of Korea

Abstract

Cellular baseband processors represent critical security compo-
nents in modern mobile devices, yet they remain challenging to
analyze due to their complexity and restricted access. While the
FirmWire enables full-system baseband emulation, it lacks protocol
state awareness, limiting its coverage and fidelity. While imple-
menting such support demands substantial engineering effort, accu-
ratelymodeling protocol states remains essential for comprehensive
baseband security analysis. In this paper, we present FirmState,
a state-aware methodology that augments baseband emulation,
specifically targeting Samsung Shannon baseband. FirmState semi-
automatically recovers and applies state information extracted from
physical devices during actual network communication, enabling
more complete code coverage and authentic behavior reproduc-
tion without extensive reverse engineering. Our evaluation demon-
strates a significant improvement in code coverage, achieving 7.5%
for RRC–2.7× higher than previous work. Additionally, our system
newly supports NAS over FirmWire, with code coverage ranging
from 4.5% to 9.2%, depending on the protocol state. Using our ap-
proach, we discovered and analyzed two 1-day vulnerabilities in
Samsung’s baseband implementation, demonstrating FirmState’s
effectiveness for baseband security. We make FirmState open-
source to support further research in baseband security.

CCS Concepts

• Security and privacy→Mobile and wireless security.

Keywords

Baseband; Security; Cellular; Emulation
ACM Reference Format:

Suhwan Jeong, Beomseok Oh, Kwangmin Kim, Insu Yun, Yongdae Kim,
and CheolJun Park. 2025. FirmState: Bringing Cellular Protocol States to
Shannon Baseband Emulation. In 18th ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec 2025), June 30-July 3, 2025,
Arlington, VA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3734477.3734726

This work is licensed under a Creative Commons Attribution 4.0 International License.
WiSec 2025, Arlington, VA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1530-3/2025/06
https://doi.org/10.1145/3734477.3734726

1 Introduction

A baseband processor presents one of the most critical attack sur-
faces in modern mobile devices. It manages radio communication
between cellular devices and networks, handling a complex proto-
col stack that spans multiple generations of wireless standards. As
a result, a baseband processor can contain various vulnerabilities.
Given the widespread use of mobile devices and the wireless acces-
sibility of this interface, such vulnerabilities can lead to significant
security threats.

Consequently, researchers have employed various methods to
test basebands. Primarily, they have relied on reverse engineering
to assess baseband security [1, 4, 5, 13]. Alternative approaches,
such as BASESPEC [12] and BASECOMP [11], leverage protocol
specifications for comparative analysis with firmware, reducing
reverse-engineering effort. Also, numerous black-box testing meth-
ods have successfully uncovered security flaws [3, 10, 15] However,
these approaches face limitations: reverse engineering demands
expert knowledge and manual effort, while black-box testing lacks
internal visibility, making root cause analysis difficult and hindering
fine-grained vulnerability assessment.

Recently, baseband emulation has emerged as a promising solu-
tion to overcome these obstacles. By replicating the real baseband
operation in controlled environments, researchers can apply exist-
ing techniques for dynamic security testing, runtime introspection,
and firmware debugging to identify vulnerabilities. Notable efforts
in this direction include BaseSAFE [14], which implements protocol-
specific emulation for MediaTek baseband with targeted coverage
of RRC and NAS layers. More recently, FirmWire [9] advanced the
state-of-the-art by enabling full-system emulation that executes
unmodified baseband firmware. It supports comprehensive features
for emulating the entire booting process of Samsung Shannon and
MediaTek baseband. Additionally, its debugging capabilities en-
able function tracing, event logging, and memory analysis during
execution, providing the foundation for automated fuzzing and
vulnerability discovery in these complex systems.

While these approaches have significantly advanced baseband
emulation research, both have limitations, as shown in Table 1.
BaseSAFE is limited to a specific basebandmodel (MT6795) and does
not support full-system emulation. Instead, it focuses on protocol-
specific fuzzing, limiting its execution context. As a result, it hin-
ders root cause analysis, harnesses development, and deeper in-
sights into internal operations. FirmWire takes this further with

https://doi.org/10.1145/3734477.3734726
https://doi.org/10.1145/3734477.3734726
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3734477.3734726

WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA Suhwan Jeong et al.

full-system emulation, allowing researchers to inspect execution
flow, memory behavior, and internal operations. However, it lacks
supporting network interaction; it cannot establish or simulate com-
munication with cellular networks. Essentially, it emulates a phone
that has just booted up but has not yet connected to a cellular net-
work. To mitigate this, it provides ModKit, which enables injecting
harnesses for testing specific protocol layers. However, FirmWire
still struggles with state-aware emulation, as its harnesses– in-
cluding the LTE RRC layer harness–cannot consider protocol state
transitions, limiting the fidelity of complex protocol interactions.

In this paper, we present FirmState, a state-aware methodology
that augments baseband emulation by integrating state informa-
tion of cellular protocols, which specially targets Samsung Shannon
baseband. It leverages runtime information from physical devices to
(semi-)automatically recover and apply these states, enabling more
complete code coverage and authentic behavior reproduction with-
out extensive reverse engineering. We implement our methodology
on the state-of-the-art baseband emulator, FirmWire, focusing on
two critical protocol layers (i.e. RRC and NAS). Our evaluation
demonstrates significant improvements in code coverage, achiev-
ing 7.5% coverage of the RRC, which is 2.7x higher than FirmWire.
Additionally, our system introduces the first to support NAS layer
emulation in this environment, achieving between 4.5% to 9.2%
coverage across different states. Additionally, state information ob-
tained from real phones through a one-time effort can be adapted
to different firmware versions or device generations with minimal
reverse engineering using FirmState.
Scope. FirmState applies broadly to Shannon baseband, but we
scope our implementation to LTE RRC and NAS layers where state
handling is critical. These can provide an effective demonstration
of our design by addressing the most security-relevant protocols.

In summary, our contributions are as follows:
• We present a novel methodology for baseband state-aware emu-
lation, which enhances state-of-the-art emulation techniques by
integrating protocol state information.We release FirmState as
open-source for future research as https://github.com/1nteger-
c/FirmState.

• Our approach achieves 7.5% code coverage for RRC layer emulation–
2.7x higher than FirmWire–and expands emulation capabilities
to include NAS, enabling the discovery of two 1-day NAS vul-
nerabilities as well as deeper security analysis.

• We demonstrate the adaptability of one state information on
different firmware version or device generation.

2 Background

2.1 Cellular Baseband

Every modern smartphone is equipped with multiple processors,
including an application processor (AP) and a baseband processor
(BP). The baseband processor is responsible for cellular communi-
cation and typically runs as a real-time operating system (RTOS).
The main operations of the baseband processor is to scan for avail-
able cellular networks, decode network information messages, and
authenticate with the appropriate network. To achieve this, the
baseband continuously exchanges messages with the cellular net-
work, operating across multiple protocol layers to handle signaling
and data transmission.

Approach Full-Emulation Target BP Target Layer State-Aware

BaseSAFE [14] ✗ M RRC, NAS ✗
FirmWire [9] ✓ S, M RRC ✗
Our work ✓ S RRC, NAS ✓

M: MediaTek, S: Samsung | ✓: Supported, ✗: Not Supported

Table 1: Comparison with existing LTE baseband emulation

approaches

The cellular network follows a layered architecture, which is
divided into two primary domains: user-plane and control-plane.
The user-plane is responsible for transmitting user data, while
the control-plane manages network signaling and session control.
One of the key protocols in the control-plane is Radio Resource
Control (RRC), which manages radio resources and connection es-
tablishment between the User Equipment (UE) and the base station.
Another critical protocol is Non-Access Stratum (NAS), which func-
tions between the UE and the Evolved Packet Core (EPC), handling
authentication, security, and session management. Notably, the
NAS protocol incorporates the Authentication and Key Agreement
(AKA) procedure, which is fundamental to cellular security.

2.2 FirmWire

FirmWire [9] is the state-of-the-art baseband emulator that enables
full-system emulation of unmodified firmware binaries. Built upon
QEMU, it supports the complete booting process and offers several
features for security research, such as a snapshot functionality for
improving the efficiency of fuzzing tasks and memory debugging
tool integration. Additionally, FirmWire provides function hooking
capabilities, allowing researchers to intercept and analyze system
functions. For instance, it hooks the logging function to redirect
debug messages to standard output, offering deeper visibility into
the system’s internal operations.

While FirmWire emulates essential hardware peripherals to
mimic real device behavior, it does not support direct interaction
with a cellular network. To address this limitation, it provides Mod-
Kit, which enables researchers to inject protocol-specific harnesses
for handling messages at various protocol layers. Due to this reason,
although FirmWire has successfully demonstrated emulation of the
RRC layer, it lacks state-aware capabilities—its harnesses operate
without considering protocol state transitions. This limitation re-
duces the fidelity of complex protocol interactions, making it less
suitable for analyzing state-dependent security vulnerabilities.

3 FirmState

To overcome the limitations of existing approaches discussed in
subsection 2.2, we introduce FirmState, a state-aware methodol-
ogy that addresses the critical challenges in baseband emulation.
Our approach significantly enhances Samsung Shannon baseband
emulation by (semi-)automatically recovering and applying state
information extracted from physical devices during actual network
communication. Thismethodology eliminates complex reverse engi-
neering by directly capturing execution traces and memory dumps,
enabling more complete code coverage and authentic behavior re-
production. In this chapter, we identify the specific challenges that
arise when implementing state-aware baseband emulation, present
our technical approaches to overcome these obstacles, and detail
the integrated architecture of FirmState.

https://github.com/1nteger-c/FirmState
https://github.com/1nteger-c/FirmState

FirmState: Bringing Cellular Protocol States to Shannon Baseband Emulation WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA

Test
network

Target
device

Device state configuration

Memory
dump

BTL log Log decoding

42 54 4C 3A
F0 FF FF 01
31 31 30 30

INIT_REQ
EMMServ

IMEISV

01000111

11001100

10010101

1010111

Control-flow recovery

Snapshot

Harness implementation

FirmWire

Snapshot patching

⋮
0x100814: 66

0x100815: 23

0x100816: 03

0x100817: 79
⋮

0x100814: 66

0x100816: 03

0x100817: 79

State
extraction

Runtime information analysis

State 2
State 1

State-aware emulation

RRC

NAS

Target states

Post-AKA

Pre-AKA

AFL
Fuzzer

Emulator

Figure 1: Overview of our design

3.1 Challenges

[C1] Complex StateManagement. Basebandmanages numerous
protocol states that drastically alter its behavior during cellular net-
work communication. During communication, baseband manages
protocol states that control different behaviors depending on the
current state. As these states highly affect the behavior of baseband,
effective emulation requires accurate understanding and handling
of these states. Without them, emulation attempts like previous
works [9, 14] will have significantly lower coverage compared to
those that incorporate state awareness. However, achieving this
state awareness remains a significant challenge due to two reasons.
First, state variables from already complex specifications are em-
bedded within intricate firmware at the memory level, making it
difficult for researchers to identify and analyze in actual implemen-
tations. Second, setting state variables with values valid for actual
network interactions is even harder. These characteristics create
significant obstacles for emulation efforts, highlighting why ad-
dressing state complexity is a cornerstone challenge in this domain.
[C2] Control Flow Visibility. Even with proper state manage-
ment, emulation efforts are hampered by limited visibility into
the actual execution paths during network communication. While
FirmWire [9] provides execution logs, these primarily reveal base-
band behavior in isolation, without the context of actual network
interaction. This creates a circular dependency: to understand
network-related execution flows, we need working emulation, yet
building accurate emulation requires understanding those flows.
This visibility problem introduces several critical challenges. First,
it complicates harness implementation, as researchers cannot easily
determine correct data structures or necessary constants. Second,
without runtime information during network communication, no
reliable ground truth exists for validating emulation correctness,
leaving researchers uncertain whether their implementations au-
thentically replicate baseband behavior. This limitation forces re-
searchers to make educated guesses about operational behaviors,
significantly increasing the complexity of reverse engineering.

3.2 Our Approach

[A1] Runtime State Extraction. We leverage runtime state
extraction from running devices, eliminating the need for time-
consuming static analysis for each firmware variant. For the state
extraction, we utilize memory dumps of Shannon baseband gener-
ated through a controlled crash mechanism accessible via hidden

menus. By first placing the device in a specific desired state (e.g., pre-
AKA and post-AKA) using a controlled test network environment
and then performing extraction, we can directly obtain memory-
level representations of those target states. As these memory dumps
contain the specific state information, we can use them in state
recovery with appropriate post-processing procedures. In particu-
lar, our analysis reveals that Shannon baseband manages protocol
states using specific C structure types, allowing us to target corre-
sponding memory regions for the extraction. However, identifying
the exact memory regions that store essential state information for
emulation presents a new challenge. We resolve it with our control
flow recovery approach described in [A2].
[A2] Control Flow Recovery. We leverage and extend the Back
Trace Log (BTL) mechanism in Shannon baseband to recover the
control flow of runtime baseband during network communication.
BTL is a proprietary debugging feature of Shannon baseband that
records execution traces with timestamps and parameters, provid-
ing visibility into firmware runtime behavior.While previously used
mainly for crash analysis [7], our investigation reveals BTL contains
comprehensive information about runtime execution paths during
network interaction, enabling recovery of previously unavailable
baseband control flow. For example, by analyzing BTL captured
after a device receives an RRC Reconfiguration Message, we can
trace the exact control flow triggered by this message, identify ac-
cessed data structures, and understand detailed data processing.
These retrieved control flows help generate appropriate harnesses,
validate emulation results, and identify state variables’ memory
locations, supporting our state extraction approach described in
[A1]. This detailed understanding of runtime behavior overcomes
the circular dependency described in [C2] and simplifies the reverse
engineering that would otherwise require extensive static analysis.

3.3 Overview

As illustrated in Figure 1, FirmState consists of three integrated
phases: device state configuration, runtime information analysis,
and state-aware emulation.
Device State Configuration. Our design fundamentally relies
on extracting meaningful information from the device to facilitate
baseband emulation with minimal effort. This approach begins with
a properly configured testbed which can manipulate the target de-
vice into desired states. The testbed allows us to create controlled
network conditions and trigger specific state transitions within
the baseband (particularly focusing on pre-AKA and post-AKA

WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA Suhwan Jeong et al.

states) that enables systematic observation of the modem’s behav-
ior. By precisely configuring the device to reach these target states
that mirror real conditions, we establish reference points for our
design. This state-aware approach prioritizes capturing essential
information that directly influences baseband functionality, reduc-
ing complexity without requiring comprehensive modeling of the
entire system.
Runtime Information Analysis. Our design extracts and corre-
lates two complementary data sources once the device reaches the
target state. First, we leverage BTL file to understand control flow,
as these execution logs contain crucial path data revealing how
baseband operates in specific states. This approach eliminates the
need to analyze the entire firmware with its numerous functions
and complex paths. We developed an adaptive framework that au-
tomatically identifies BTL format versions, ensuring compatibility
across different Shannon baseband generations. This auto-detection
ensures our methodology remains effective across various Shannon
baseband without requiring manual configuration.

The second component involves extracting targeted memory
segments containing state information from the overall memory
dump. Our design uses decoded BTL to semi-automatically locate
state-related structures in memory dumps, rather than analyzing
the completememory. This targeted extraction significantly reduces
the complexity of state recovery while ensuring only relevant in-
formation is captured for emulation.
State-Aware Emulation. To achieve state-aware baseband em-
ulation, we must apply retrieved state memory within a properly
designed harness capable of handling target protocol messages. For
harness generation, we leverage analyzed control flow informa-
tion. Shannon baseband is structured according to protocol layers
(Tasks), with functions managed through a msgGroup variable.
Effective harness generation requires identifying the exact Task
and msgGroup to inject messages at the correct position and un-
derstanding the C structure of these messages. The BTL logs and
reconstructed control flow provide this information, enabling us to
implement a basic harness that can process target messages.

However, this basic harness may not execute properly without
proper state configuration. To address this challenge, our design
incorporates a snapshot-patching procedure. While the original
FirmWire [9] includes functionality to capture snapshots after boot-
ing to reduce execution time, our design extends this capability
to load specific memory segments (such as state information) and
patch specific functions to manage or force particular control flows.
For example, we can bypass MAC validation functions that would
otherwise unnecessarily complicate emulation. This patching pro-
cedure offers versatility beyond state configuration and can be
applied in various ways to streamline emulation.

By combining the harness with properly configured states, we
establish the foundation for target emulation. Nevertheless, dis-
crepancies may still exist between device logs and emulator output.
To address these differences, our design incorporates a progres-
sive refinement process through an error correction feedback loop.
By identifying differences between device and emulator logs, we
can pinpoint inaccuracies in our emulation. This iterative process
allows us to refine our approach by revisiting previous stages as
needed, ultimately achieving successful baseband emulation that
accurately reflects real device behavior.

Phone Model BP Version Release Date BTL Version [7] FirmState

Galaxy Note8 N950NKOU5DSL1 2020.01.09. 1100 ● ●

Galaxy S9 G960NKOU2CSI1 2019.10.02. 1100 ● ●

Galaxy S9+ G965FXXSHFUJ2 2021.10.19. 1100 ● ●

Galaxy Note9 N960FXXU4ASJ2 2021.05.08. 1100 ● ●

Galaxy S10 G973FXXU9FUCD 2021.03.23. 1200 ○ ●

Galaxy S10 G973FXXUAFUE1 2021.05.07. 1200 ○ ●

Galaxy S10 G973NKOU7HVG2 2022.07.29. 1200 ○ ●

Galaxy S10 G973NKOU7HWD1 2023.04.18. 1200 ○ ●

Galaxy S10e G970NKOU7HWD1 2023.04.18. 1200 ○ ●

Galaxy A30 A305NKOS5CVF1 2022.06.22. 1200 ○ ●

Galaxy Note10 5G N971NKOU2HWH3 2023.08.16. 1200 ○ ●

Galaxy S21 G991NKOU4EWE2 2023.06.26. 1300 ○ ●

Galaxy S24 S921NKSU2AXE4 2024.06.10. 1410 ○ ●

Table 2: BTL Versions of commercial Samsung phones

4 Implementation

Our design builds upon FirmWire [9], providing protocol-level
emulation for Shannon baseband focusing on LTE RRC and NAS
layers. We selected these protocols for their critical role in device
control and security, and their complex state-dependent nature
demonstrates our methodology’s effectiveness. Our implementa-
tion required two foundational components: a snapshot-patching
procedure and BTL decoding extensions.
Snapshot-Patching Procedure. We developed a GDB-based ap-
proach that extends FirmWire’s snapshot capabilities with custom
patching scripts. By setting strategic breakpoints before snapshot
capture and executing specific GDB commands, we precisely mod-
ify state-related memory structures and function behaviors. This
produces patched snapshots that accurately configure states, elim-
inating the need for manual intervention and enabling precise
control over the baseband’s internal state.
BTL Decoder Extension. We extended BTL decoding capabilities
to extract runtime information from baseband. After collecting BTL
files from 13 different devices with varying versions (shown in
Table 2), we identified four distinct BTL versions. We analyzed their
internal structure, identifying key differences in header format, field
alignment, and element offsets while preserving the fundamental
structure. We refactored the available scripts [7], which supported
a single version, and implemented an adaptive parsing system that
automatically detects the BTL version and adjusts accordingly. Our
decoder successfully interprets all four BTL versions, providing
unified access to runtime information across device generations.
RRC Layer Emulation. We generate the harness by referencing
control flow from BTL file. During state extraction, we observe the
memory range of the RRC state from memory dumps, comparing
the states between the basic harness and the BTL. After incorporat-
ing state information with our snapshot-patching procedure, we
achieve successful RRC emulation with proper state handling, vali-
dated by comparing device logs with emulator logs under identical
conditions. Our implementation’s effectiveness is demonstrated
through code coverage comparisons in subsection 5.1.
NAS Layer Emulation. For NAS layer emulation, we analyze de-
coded BTL to identify key C structures containing NAS states from
text identifiers like RegStatus or SAEMM_REGI_INIT. We extract
relevant memory regions and apply snapshot-patching for pre-AKA
state emulation. Post-AKA state emulation presented additional
challenges with Message Authentication Code (MAC) checking
functions impeding control flow, which we resolved by bypassing
the MAC validation function identified through emulator logs. Us-
ing debugging tools, we confirmed that various NAS messages are
properly processed by appropriate handler functions.

FirmState: Bringing Cellular Protocol States to Shannon Baseband Emulation WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA

Figure 2: Comparison of RRC fuzzing code coverage between

our implementation and original Firmwire

5 Evaluation

We evaluate our approach from three perspectives: (1) fuzzing per-
formance, comparing code coverage with FirmWire and presenting
two 1-day vulnerabilities verified through over-the-air testing, (2)
root cause analysis of these vulnerabilities, and (3) adaptability
across different firmware versions and device models.

5.1 Fuzzer Performance

Setup. We conducted our evaluations using a server equipped
with an Intel i7-14700K processor (28 cores) and 32GB of memory
running Ubuntu 22.04. To ensure fair comparison, we tested both
our implementation and FirmWire using identical firmware (Galaxy
S10: G973FXXUAFUE3) and the same fuzzing engine, AFL++[2]. All
coverage measurements were performed over a consistent 24-hour
fuzzing period and repeated across three independent runs to en-
sure statistical validity. As FirmWire used Ghidra-based scripts for
tracking basic block coverage, we adapted them to equivalent IDA
scripts to ensure consistency in our measurement methodology.1
Measurement Results. Ourmeasurement results demonstrate the
effectiveness of our state-aware emulation approach. As shown in
Figure 2, our implementation consistently achieves higher code cov-
erage than FirmWire across the 24-hour evaluation period, with the
shaded areas representing the range from three independent runs
and solid lines indicating median coverage. We also measure basic
blocks specific to the target protocol layers. Our approach achieves
7.5% code coverage on the RRC layer (2.7× higher than FirmWire’s
2.8%) and between 4.5% to 9.2% on the NAS layer for pre-AKA and
post-AKA states respectively. The increase in NAS coverage from
pre-AKA to post-AKA states clearly demonstrates that proper state
handling significantly impacts coverage, confirming both the im-
portance of our state-aware approach and its effectiveness. These
results clearly show that FirmWire’s lack of state consideration
limits thorough code coverage in baseband testing.
Fuzzing Results. The fuzzing campaigns yield several candidate
findings, which we then verify by replaying each candidate pay-
load on physical devices using our state-setting environment. This
verification confirms two crashes: one in the pre-AKA state and
another in the post-AKA state. We also analysis the root cause of
each vulnerability in subsection 5.2.

1For details on the measurement methodology, please refer to the Evaluation section
of FirmWire.

Implementation Layer Covered / Total coverage (%)

FirmWire RRC 2,447 / 87,371 2.8%
FirmState RRC 6,572 / 87,371 7.5%

FirmState (pre-AKA) NAS 1,320 / 29,128 4.5%
FirmState (post-AKA) NAS 2,739 / 29,128 9.2%

Table 3: Code Coverage Results

5.2 Root Cause Analysis

One key advantage of baseband emulation is the ability to perform
detailed root-cause analysis. We employed QEMU’s executed block
retrieval functionality and GDB for dynamic analysis to identify
precise vulnerability mechanisms.
pre-AKA vulnerability. The pre-AKA vulnerability manifests
in a buffer copying mechanism during message parsing. The im-
plementation uses an unsigned integer to track remaining data
length while copying fixed 0x20-byte chunks. When processing
data whose length is not a multiple of 0x20, the final subtraction
operation causes integer underflow, which results in an infinite
copying loop that ultimately crashes the modem.
post-AKA vulnerability. The post-AKA vulnerability exists in
the Emergency Number List parsing routine, as shown in Listing 1.
This parser implements a hierarchical structure with a top-level
length field followed by multiple entries. The vulnerability stems
from using a BYTE instruction for incrementing the index pointer
during parsing. With a crafted length value of 0xFF, the increment
operation causes integer overflow to 0x00, forcing the parser into
an infinite loop as it repeatedly processes the same memory region.

Listing 1: Infinity Loop in decoding EmergencyNumberList

while (idx < length){
EmergencyNumberStruct = &data[idx]
...
idx += data[idx] + 1; // [BUG] UXTB instruction!!
memset(outBuf, 0xFF, 22);
EmergencyNumberLen = *EmergencyNumberStruct;
for (i = 0; EmergencyNumberLen - 1 > i; i = (i + 1)){

// outBuf <- parse(EmergencyNumberStruct)
EmergencyListParse(outBuf);

}
}

5.3 Adaptability

One question regarding our methodology is whether FirmState
need the exact device with the target firmware for supporting state-
aware emulation. To investigate this concern, we evaluated our
approach’s adaptability across different devices and firmware ver-
sions. Our tests successfully demonstrated NAS emulation on re-
cent Galaxy S10 and Galaxy S9 versions using state information
extracted from an older (2021) Galaxy S10 firmware.

This cross-device implementation required only two adjustments.
First, updating firmware-specific constants in the harness (e.g., the
identifier for "LTE_PDCP_DATA_IND" differs between S9 and S10
implementations). FirmState automatically identifies these differ-
ences and converts them to appropriate values. Second, mapping
memory layouts across versions, which proved straightforward
since state-related structures remain largely consistent due to stan-
dardized protocol specifications. For NAS layer specifically, registra-
tion and authentication structures maintained uniform definitions
across implementations, with FirmState automatically detect and

WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA Suhwan Jeong et al.

adjust the required base address offsets. These findings demon-
strate that FirmState transfers effectively across different device
types and firmware versions with minimal effort, making baseband
security analysis accessible without deep baseband expertise.

6 Discussion

Self-evolving State Exploration. While effective for predeter-
mined states, FirmState struggles with short-duration state. As
further work, creating a feedback mechanism within FirmState
could be a promising approach. During fuzzing, when the emulator
transitions to a new state, it could capture memory dump and BTL
from this state. This data might then serve as input for FirmState’s
analysis pipeline, enabling emulation of newly discovered states
without additional device state configuration. This approach would
extend FirmState’s capabilities, potentially revealing previously
unidentified execution paths and security vulnerabilities.
Broader Applications of Methodology. While our work fo-
cused on Shannon baseband emulation, the core methodology we
propose has broader applications beyond this specific context. The
techniques can enhance static analysis of baseband, which tradition-
ally suffers from limited visibility into state-dependent behaviors
and complex execution paths. Our BTL decoding and state recovery
techniques provide context that improves the precision of static
analysis by helping them better understand path constraints and re-
duce false positives when identifying vulnerabilities. Furthermore,
our approach can be adapted to other platforms such as MediaTek
baseband with minimal modification, provided that memory dumps
and execution logs can be acquired. The key requirement across
any implementation is simply access to runtime state information.

7 Related Work

Reverse Engineering. Previous research [1, 5, 13] have utilized
reverse engineering to analyze baseband, requiring manual effort.
Recent research [11, 12] has aimed to this effort by leveraging proto-
col specifications. BASESPEC [12] introduces a comparative analy-
sis that examines message structures implementation by leveraging
cellular specifications, successfully uncovering multiple functional
errors and memory-related vulnerabilities. BASECOMP [11] ex-
tends this effort by introducing a probabilistic inference model to
identify integrity protection mechanisms, significantly reducing
manual analysis efforts while discovering severe security flaws.
Unlike these works, FirmState reduces reverse engineering effort
by recovering control flow with the extracted runtime information.
Emulation-based Analysis. Grassi et al. [6] showed how Me-
diaTek’s baseband could be reverse engineered and emulated to
discover memory vulnerabilities. Natalie Silvanovich [16] demon-
strated an emulation-based approach to analyzing and exploiting
vulnerabilities in Samsung baseband. However, both efforts were
industry-driven, and their implementations were not released as
open-source. In contrast, two major works have been open-sourced
in academia, significantly advancing baseband emulation research.
Maier et al. [14] emulate the RRC and NAS layers of a specific
MediaTek firmware and find memory corruptions through fuzzing.
Hernandez et al. [8] took this further by developing a QEMU-based
emulation framework for Samsung and MediaTek baseband, achiev-
ing full-system emulation that supports broader firmware analysis.

FirmState enhances state-of-the-art baseband emulator to enable
state-aware protocol emulation, improving fidelity and bridging
the gap between emulation and real-world baseband behavior.

8 Conclusion

Baseband security analysis is challenging due to closed-source
firmware and state-dependent behavior. While the state-of-the-
art baseband emulator, FirmWire, supports executing unmodified
baseband firmware and provides debugging capabilities, its lack
of network interaction prevents protocol state awareness, limit-
ing coverage and fidelity. In this paper, we present FirmState, a
state-aware methodology that enhances baseband emulation by
recovering and applying state information from a real device, al-
lowing emulator to more accurately reproduce stateful protocol
behavior. We show that FirmState improves code coverage and en-
ables NAS layer emulation, which was previously unsupported. We
discovered two one-day vulnerabilities on NAS and demonstrated
that FirmState enables detailed root cause analysis. Furthermore,
we showed that state information extracted from a real device
can be adapted to different firmware versions and device models,
demonstrating its applicability beyond a single target.

Acknowledgments

This work was supported by the Institute of Information & Commu-
nications Technology Planning & Evaluation(IITP) grant funded by
the Korea government(MSIT) (No.RS-2024-00437252, Development
of anti-sniffing technology in mobile communication and AirGap
environments).

References

[1] Amat Cama. 2018. A walk with Shannon. OPCDE (2018).
[2] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:

Combining Incremental Steps of Fuzzing Research. In USENIX WOOT.
[3] Matheus E Garbelini, Zewen Shang, Shijie Luo, and Sudipta Chattopadhyay. 2023.

5GHOUL: Unleashing Chaos on 5G Edge Devices. Technical Report. SUTD.
[4] Nico Golde. 2018. There’s Life in the Old Dog Yet: Tearing New Holes into

Intel/iPhone Cellular Modems. Comsecuris (2018).
[5] Nico Golde and Daniel Komaromy. 2016. Breaking Band: reverse engineering

and exploiting the shannon baseband. REcon (2016).
[6] Marco Grassi and Xingyu Chen. 2020. Exploring the MediaTek Baseband. Offen-

siveCon (2020).
[7] Grant Hernandez. 2021. ShannonBaseband: Samsung Shannon Baseband Re-

search. GitHub repository. https://github.com/grant-h/ShannonBaseband
[8] Grant Hernandez and Marius Muench. 2020. Emulating Samsung’s Baseband for

Security Testing. BlackHat USA (2020).
[9] Grant Hernandez, Marius Muench, Dominik Maier, Alyssa Milburn, Shinjo Park,

Tobias Scharnowski, Tyler Tucker, Patrick Traynor, and Kevin Butler. 2022.
FIRMWIRE: Transparent dynamic analysis for cellular baseband firmware. In
NDSS.

[10] Syed Rafiul Hussain, Imtiaz Karim, Abdullah Al Ishtiaq, Omar Chowdhury, and
Elisa Bertino. 2021. Noncompliance as deviant behavior: An automated black-box
noncompliance checker for 4g lte cellular devices. In CCS.

[11] Eunsoo Kim, Min Woo Baek, CheolJun Park, Dongkwan Kim, Yongdae Kim, and
Insu Yun. 2023. BASECOMP: A Comparative Analysis for Integrity Protection in
Cellular Baseband Software. In USENIX Security.

[12] Eunsoo Kim, Dongkwan Kim, CheolJun Park, Insu Yun, and Yongdae Kim. 2021.
BaseSpec: Comparative Analysis of Baseband Software and Cellular Specifications
for L3 Protocols.. In NDSS.

[13] Daniel Komaromy. 2023. Basebanheimer: Now I Am Become Death, The De-
stroyer Of Chains. OffensiveCon (2023).

[14] Dominik Maier, Lukas Seidel, and Shinjo Park. 2020. BaseSAFE: Baseband sani-
tized fuzzing through emulation. In ACM WiSec.

[15] C Park, Sangwook Bae, B Oh, Jiho Lee, Eunkyu Lee, Insu Yun, and Yongdae Kim.
2022. DoLTEst: In-depth Downlink Negative Testing Framework for LTE Devices.
In USENIX Security.

[16] Natalie Silvanovich. 2023. How to Hack Shannon Baseband (from a Phone).
OffensiveCon (2023).

https://github.com/grant-h/ShannonBaseband

	Abstract
	1 Introduction
	2 Background
	2.1 Cellular Baseband
	2.2 FirmWire

	3 FirmState
	3.1 Challenges
	3.2 Our Approach
	3.3 Overview

	4 Implementation
	5 Evaluation
	5.1 Fuzzer Performance
	5.2 Root Cause Analysis
	5.3 Adaptability

	6 Discussion
	7 Related Work
	8 Conclusion
	References

