
RGFuzz: Rule-Guided Fuzzer for
WebAssembly Runtimes

Junyoung Park1, Yunho Kim*2, Insu Yun*1

1KAIST, 2Hanyang University
*Co-corresponding Authors

1

WebAssembly (WASM)

- Fast, safe, portable, and compact language

- Best for compilation target for other languages

2Compilers

Runtime
(Included in Browsers)

WebAssembly

WebAssembly Runtimes

- WebAssembly runs on a stack machine

- Stack machine is slow → Let’s compile the code!

- Just-In-Time (JIT) compilation to machine code

3

local.get 0
local.get 1
i64.and
local.get 1
i64.const -1
i64.xor
i64.or

push rbp
mov rbp, rsp
not rcx
mov rax, rdx
or rax, rcx
mov rsp, rbp
pop rbp
ret

Compile

Compiler Optimizations

- Optimizations to further boost speed

4

local.get 0
local.get 1
i64.and
local.get 1
i64.const -1
i64.xor
i64.or

1. Translate to IR

[Args] v0: i64, v1: i64

v2 = band v0, v1
v3 = iconst.i64 -1
v4 = bxor v1, v3
v5 = bor v2, v4
return v5

Compiler Optimizations

- Apply simple rule: v1 ^ -1 → ~v1 (changed to not)

5

[Args] v0: i64, v1: i64

v2 = band v0, v1
v3 = iconst.i64 -1
v4 = bxor v1, v3
v5 = bor v2, v4
return v5

Compiler Optimizations

- Apply simple rule: v1 ^ -1 → ~v1 (changed to not)

6

[Args] v0: i64, v1: i64

v2 = band v0, v1
v3 = iconst.i64 -1
v4 = bxor v1, v3
v5 = bor v2, v4
return v5

Compiler Optimizations

- Apply simple rule: v1 ^ -1 → ~v1 (changed to not)

7

[Args] v0: i64, v1: i64

v2 = band v0, v1
v3 = iconst.i64 -1
v4 = bxor v1, v3
v5 = bor v2, v4
return v5

2. Simple rule
v1 ^ -1 → ~v1

[Args] v0: i64, v1: i64

v2 = band v0, v1

v4 = bnot v1
v5 = bor v2, v4
return v5

Compiler Optimizations

- Apply simple rule: v1 ^ -1 → ~v1 (changed to not)

8

[Args] v0: i64, v1: i64

v2 = band v0, v1
v3 = iconst.i64 -1
v4 = bxor v1, v3
v5 = bor v2, v4
return v5

2. Simple rule
v1 ^ -1 → ~v1

Compiler Optimizations

- Can also apply complex rule: (v0 & v1) | ~v1 → v0 | ~v1

9

[Args] v0: i64, v1: i64

v2 = band v0, v1

v4 = bnot v1
v5 = bor v2, v4
return v5

Compiler Optimizations

- Can also apply complex rule: (v0 & v1) | ~v1 → v0 | ~v1

10

[Args] v0: i64, v1: i64

v2 = band v0, v1

v4 = bnot v1
v5 = bor v2, v4
return v5

Compiler Optimizations

- Can also apply complex rule: (v0 & v1) | ~v1 → v0 | ~v1

11

[Args] v0: i64, v1: i64

v2 = band v0, v1

v4 = bnot v1
v5 = bor v2, v4
return v5

[Args] v0: i64, v1: i64

v2 = v0

v4 = bnot v1
v5 = bor v2, v4
return v5

3. Apply complex rule
(v0 & v1) | ~v1

→ v0 | ~v1

Semantic Bugs

- What happens if optimization rules are wrongly written?

- Semantic bug: For some input, exec. of original code != exec. of compiled code

12

local.get 0
local.get 1
i64.and
local.get 1
i64.const -1
i64.xor
i64.or

push rbp
mov rbp, rsp
not rcx
mov rax, rdx
or rax, rcx
mov rsp, rbp
pop rbp
ret

Compile

Are they
equivalent?

Finding Semantic Bugs

13

Generator Test Cases
(Programs)

- Differential fuzzing

Finding Semantic Bugs

- Differential fuzzing

14

Generator Test Cases
(Programs)

Execution

Finding Semantic Bugs

- Differential fuzzing

15

Generator Test Cases
(Programs)

Execution

Compare
Results

Finding Semantic Bugs

- Differential fuzzing

16

Generator Test Cases
(Programs)

Execution

Compare
Results

How can we generate
test cases efficiently?

local.get 0
local.get 1
i64.and
local.get 1
i64.const -1
i64.xor
i64.or

Approach 1: Rule-guided Fuzzing

- Challenge 1.1: Complex rules

17

(v0 & v1) | ~v1
→ v0 | ~v1 Testing needs:

Optimization

WASM Program

local.get 0
local.get 1
i64.and
local.get 1
i64.const -1
i64.xor
i64.or

Approach 1: Rule-guided Fuzzing

- Challenge 1.1: Complex rules

18

(v0 & v1) | ~v1
→ v0 | ~v1 Testing needs:

Optimization

Odds of generating
this randomly?

How do we guide this?

WASM Program

local.get 0
local.get 1
i64.and
local.get 1
i64.const -1
i64.xor
i64.or

Approach 1: Rule-guided Fuzzing

- Challenge 1.1: Complex rules

19

(v0 & v1) | ~v1
→ v0 | ~v1 Testing needs:

Optimization

Odds of generating
this randomly?

How do we guide this?

WASM Program

[Preliminary Study]
SOTA fuzzers failed to
generate such program

(Xsmith, wasm-smith)

local.get 0
local.get 1
i64.and
local.get 1
i64.const -1
i64.xor
i64.or

Approach 1: Rule-guided Fuzzing

- Challenge 1.1: Complex rules

20

(v0 & v1) | ~v1
→ v0 | ~v1 Testing needs:

Optimization

Solution: Rule-guided fuzzing
→ Extract the rules and use
 them in fuzzing

WASM Program

local.get 0
local.get 1
i64.and
local.get 1
i64.const -1
i64.xor
i64.or

Approach 1: Rule-guided Fuzzing

- Challenge 1.1: Complex rules

21

(v0 & v1) | ~v1
→ v0 | ~v1 Testing needs:

Optimization

Solution: Rule-guided fuzzing
→ Extract the rules and use
 them in fuzzing

WASM Program

[Challenge]
Compiler rules: Defined in IR
Programs: Written in WASM

local.get 0
local.get 1
i64.and
local.get 1
i64.const -1
i64.xor
i64.or

Approach 1: Rule-guided Fuzzing

- Challenge 1.1: Complex rules

22

(v0 & v1) | ~v1
→ v0 | ~v1 Testing needs:

Optimization

Solution: Rule-guided fuzzing
→ Extract the rules and use
 them in fuzzing

WASM Program

IR vs. WASM

[Challenge]
Compiler rules: Defined in IR
Programs: Written in WASM

How do we close the gap??

Approach 1.1: Instruction-level Inference

- Challenge 1.2: Closing the gap between IR and WebAssembly

23

Instruction-level Inference:

band → i64.and
bor → i64.or
bnot → ???

Approach 1.1: Instruction-level Inference

- Challenge 1.2: Closing the gap between IR and WebAssembly

24

Instruction-level Inference:

band → i64.and
bor → i64.or
bnot → ???

We do not have a WASM instruction
that directly maps to bnot

Rule-level Inference:

band → i64.and
bor → i64.or
bnot → opt. rule*

Approach 1.2: Rule-level Inference

- Challenge 1.2: Closing the gap between IR and WebAssembly

25

Refer to other rules
for missing linkages

Approach 1.2: Rule-level Inference

- Challenge 1.2: Closing the gap between IR and WebAssembly

26

Refer to other rules
for missing linkages

v3 = iconst.i64 -1
v4 = bxor v1, v3

into

v4 = bnot v1

Rule-level Inference:

band → i64.and
bor → i64.or
bnot → opt. rule*

Approach 2: Reverse Stack-based Generation

- Challenge 2: Generate structures or instructions diversely
- AST-based : limited structure diversity (e.g., blocks)
- Stack-based: limited instruction diversity (e.g., select)

27

AST-based Stack-based

i32

i32 i32

i32 i32i32

① i32.add

② select

③ block
[] → [i32 i32]
[] → [i32]

Instructions
① local.get 0
② local.get 1
③ i32.add select
④ block
 [] → [i32 i32]

Stack
[]

[i32]
[i32 i32]

[i32]
[i32 i32 i32]

Approach 2: Reverse Stack-based Generation

- Solution: Reverse stack-based generation
- Stack-based generation, but done reversely

28

Approach 2: Reverse Stack-based Generation

- Solution: Reverse stack-based generation
- Stack-based generation, but done reversely
- Observation: Instructions have only 0-1 return types
 → Less stack state constraints on generating instructions

29

Approach 2: Reverse Stack-based Generation

- Solution: Reverse stack-based generation
- Stack-based generation, but done reversely
- Observation: Instructions have only 0-1 return types
 → Less stack state constraints on generating instructions
 e.g., v128.bitselect requires 3 v128s on parameters, but only 1 in returns

30

Evaluation

- Target Runtimes: 6 runtimes
- wasmtime, Wasmer, WasmEdge, V8, SpiderMonkey, JavaScriptCore
- Tested various optimization / architectures

- Found 20 new bugs, with one CVE ID (CVE-2023-29548)

31

Evaluation

- Coverage
- Able to cover significantly more in wasmtime

32

Evaluation

- Coverage
- Able to cover significantly more in wasmtime
- Could also efficiently test other runtimes
- Rule-guided fuzzing was only effective in wasmtime though

33

Case Study

- Could even cover super complex optimizations

34
Complex Optimization Rule

Specific Immediates

Case Study

- Could find optimization bugs!

35

min mistaken as max
wasmtime issue 8114

Load more bytes than expected (as xmm)
wasmtime issue 8112

Key Takeaways

- Two main approaches
- Rule-guided fuzzing
- Reverse stack-based generation

- Showed effectiveness in finding optimization bugs

36

