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WebAssembly (WASM)

- Fast, safe, portable, and compact language

- Best for compilation target for other languages

2Compilers

Runtime
(Included in Browsers)

WebAssembly



WebAssembly Runtimes

- WebAssembly runs on a stack machine

- Stack machine is slow → Let’s compile the code!

- Just-In-Time (JIT) compilation to machine code
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local.get 0
local.get 1
i64.and
local.get 1
i64.const -1
i64.xor
i64.or

push rbp
mov rbp, rsp
not rcx
mov rax, rdx
or rax, rcx
mov rsp, rbp
pop rbp
ret

Compile



Compiler Optimizations

- Optimizations to further boost speed
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local.get 0
local.get 1
i64.and
local.get 1
i64.const -1
i64.xor
i64.or

1. Translate to IR

[Args] v0: i64, v1: i64

v2 = band v0, v1
v3 = iconst.i64 -1
v4 = bxor v1, v3
v5 = bor v2, v4
return v5



Compiler Optimizations

- Apply simple rule: v1 ^ -1 → ~v1 (changed to not)
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[Args] v0: i64, v1: i64

v2 = band v0, v1
v3 = iconst.i64 -1
v4 = bxor v1, v3
v5 = bor v2, v4
return v5

2. Simple rule
v1 ^ -1 → ~v1



[Args] v0: i64, v1: i64

v2 = band v0, v1

v4 = bnot v1
v5 = bor v2, v4
return v5

Compiler Optimizations

- Apply simple rule: v1 ^ -1 → ~v1 (changed to not)
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[Args] v0: i64, v1: i64

v2 = band v0, v1
v3 = iconst.i64 -1
v4 = bxor v1, v3
v5 = bor v2, v4
return v5

2. Simple rule
v1 ^ -1 → ~v1



Compiler Optimizations

- Can also apply complex rule: (v0 & v1) | ~v1 → v0 | ~v1
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[Args] v0: i64, v1: i64

v2 = band v0, v1

v4 = bnot v1
v5 = bor v2, v4
return v5



Compiler Optimizations

- Can also apply complex rule: (v0 & v1) | ~v1 → v0 | ~v1
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[Args] v0: i64, v1: i64

v2 = band v0, v1

v4 = bnot v1
v5 = bor v2, v4
return v5

[Args] v0: i64, v1: i64

v2 = v0

v4 = bnot v1
v5 = bor v2, v4
return v5

3. Apply complex rule
(v0 & v1) | ~v1

→ v0 | ~v1



Semantic Bugs

- What happens if optimization rules are wrongly written?

- Semantic bug: For some input, exec. of original code != exec. of compiled code
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local.get 0
local.get 1
i64.and
local.get 1
i64.const -1
i64.xor
i64.or

push rbp
mov rbp, rsp
not rcx
mov rax, rdx
or rax, rcx
mov rsp, rbp
pop rbp
ret

Compile

Are they
equivalent?



Finding Semantic Bugs
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Generator Test Cases
(Programs)

- Differential fuzzing



Finding Semantic Bugs

- Differential fuzzing
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Generator Test Cases
(Programs)

Execution



Finding Semantic Bugs

- Differential fuzzing
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Generator Test Cases
(Programs)

Execution

Compare
Results



Finding Semantic Bugs

- Differential fuzzing
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Generator Test Cases
(Programs)

Execution

Compare
Results

How can we generate
test cases efficiently?



local.get 0
local.get 1
i64.and
local.get 1
i64.const -1
i64.xor
i64.or

Approach 1: Rule-guided Fuzzing

- Challenge 1.1: Complex rules
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(v0 & v1) | ~v1
→ v0 | ~v1 Testing needs:

Optimization

WASM Program
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(v0 & v1) | ~v1
→ v0 | ~v1 Testing needs:

Optimization

Odds of generating
this randomly?

How do we guide this?

WASM Program
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- Challenge 1.1: Complex rules
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(v0 & v1) | ~v1
→ v0 | ~v1 Testing needs:

Optimization

Odds of generating
this randomly?

How do we guide this?

WASM Program

[Preliminary Study]
SOTA fuzzers failed to 
generate such program

(Xsmith, wasm-smith)
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(v0 & v1) | ~v1
→ v0 | ~v1 Testing needs:

Optimization

Solution: Rule-guided fuzzing
→ Extract the rules and use
     them in fuzzing

WASM Program
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WASM Program

[Challenge]
Compiler rules: Defined in IR
Programs: Written in WASM
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(v0 & v1) | ~v1
→ v0 | ~v1 Testing needs:

Optimization

Solution: Rule-guided fuzzing
→ Extract the rules and use
     them in fuzzing

WASM Program

IR vs. WASM

[Challenge]
Compiler rules: Defined in IR
Programs: Written in WASM

How do we close the gap??



Approach 1.1: Instruction-level Inference

- Challenge 1.2: Closing the gap between IR and WebAssembly
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Instruction-level Inference:

band → i64.and
bor   → i64.or
bnot  → ???



Approach 1.1: Instruction-level Inference

- Challenge 1.2: Closing the gap between IR and WebAssembly
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Instruction-level Inference:

band → i64.and
bor   → i64.or
bnot  → ???

We do not have a WASM instruction 
that directly maps to bnot



Rule-level Inference:

band → i64.and
bor   → i64.or
bnot  → opt. rule*

Approach 1.2: Rule-level Inference

- Challenge 1.2: Closing the gap between IR and WebAssembly
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Refer to other rules
for missing linkages



Approach 1.2: Rule-level Inference

- Challenge 1.2: Closing the gap between IR and WebAssembly
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Refer to other rules
for missing linkages

v3 = iconst.i64 -1
v4 = bxor v1, v3

into

v4 = bnot v1

Rule-level Inference:

band → i64.and
bor   → i64.or
bnot  → opt. rule*



Approach 2: Reverse Stack-based Generation

- Challenge 2: Generate structures or instructions diversely
- AST-based  : limited structure diversity (e.g., blocks)
- Stack-based: limited instruction diversity (e.g., select)
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AST-based Stack-based

i32

i32 i32

i32 i32i32

① i32.add

② select

③ block
[] → [i32 i32]
[] → [i32]

Instructions
① local.get 0
② local.get 1
③ i32.add select
④ block
     [] → [i32 i32]

Stack
[]

[i32]
[i32 i32]

[i32]
[i32 i32 i32]



Approach 2: Reverse Stack-based Generation

- Solution: Reverse stack-based generation
- Stack-based generation, but done reversely
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Approach 2: Reverse Stack-based Generation

- Solution: Reverse stack-based generation
- Stack-based generation, but done reversely
- Observation: Instructions have only 0-1 return types
  → Less stack state constraints on generating instructions
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Approach 2: Reverse Stack-based Generation

- Solution: Reverse stack-based generation
- Stack-based generation, but done reversely
- Observation: Instructions have only 0-1 return types
  → Less stack state constraints on generating instructions
  e.g., v128.bitselect requires 3 v128s on parameters, but only 1 in returns
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Evaluation

- Target Runtimes: 6 runtimes
- wasmtime, Wasmer, WasmEdge, V8, SpiderMonkey, JavaScriptCore
- Tested various optimization / architectures

- Found 20 new bugs, with one CVE ID (CVE-2023-29548)
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Evaluation

- Coverage
- Able to cover significantly more in wasmtime
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Evaluation

- Coverage
- Able to cover significantly more in wasmtime
- Could also efficiently test other runtimes
- Rule-guided fuzzing was only effective in wasmtime though
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Case Study

- Could even cover super complex optimizations
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Complex Optimization Rule

Specific Immediates



Case Study

- Could find optimization bugs!
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min mistaken as max
wasmtime issue 8114

Load more bytes than expected (as xmm)
wasmtime issue 8112



Key Takeaways

- Two main approaches
- Rule-guided fuzzing
- Reverse stack-based generation

- Showed effectiveness in finding optimization bugs

36


